forked from atomistic-machine-learning/G-SchNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqm9_preprocess_dataset.py
497 lines (446 loc) · 21.7 KB
/
qm9_preprocess_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import collections
import argparse
import sys
import time
import numpy as np
import logging
from ase.db import connect
from scipy.spatial.distance import pdist
from utility_classes import ConnectivityCompressor, Molecule
from multiprocessing import Process, Queue
from pathlib import Path
def get_parser():
""" Setup parser for command line arguments """
main_parser = argparse.ArgumentParser()
main_parser.add_argument('datapath', help='Full path to dataset (e.g. '
'/home/qm9.db)')
main_parser.add_argument('--valence_list',
default=[1, 1, 6, 4, 7, 3, 8, 2, 9, 1], type=int,
nargs='+',
help='The valence of atom types in the form '
'[type1 valence type2 valence ...] '
'(default: %(default)s)')
main_parser.add_argument('--n_threads', type=int, default=16,
help='Number of extra threads used while '
'processing the data')
main_parser.add_argument('--n_mols_per_thread', type=int, default=100,
help='Number of molecules processed by each '
'thread in one iteration')
return main_parser
def is_disconnected(connectivity):
'''
Assess whether all atoms of a molecule are connected using a connectivity matrix
Args:
connectivity (numpy.ndarray): matrix (n_atoms x n_atoms) indicating bonds
between atoms
Returns
bool: True if the molecule consists of at least two disconnected graphs,
False if all atoms are connected by some path
'''
con_mat = connectivity
seen, queue = {0}, collections.deque([0]) # start at node (atom) 0
while queue:
vertex = queue.popleft()
# iterate over (bonded) neighbors of current node
for node in np.argwhere(con_mat[vertex] > 0).flatten():
# add node to queue and list of seen nodes if it has not been seen before
if node not in seen:
seen.add(node)
queue.append(node)
# if the seen nodes do not include all nodes, there are disconnected parts
return seen != {*range(len(con_mat))}
def get_count_statistics(mol=None, get_stat_heads=False):
'''
Collects atom, bond, and ring count statistics of a provided molecule
Args:
mol (utility_classes.Molecule): Molecule to be examined
get_stat_heads (bool, optional): set True to only return the headers of
gathered statistics (default: False)
Returns:
numpy.ndarray: (n_statistics x 1) array containing the gathered statistics. Use
get_stat_heads parameter to obtain the corresponding row headers (where RX
describes number of X-membered rings and CXC indicates the number of
carbon-carbon bonds of order X etc.).
'''
stat_heads = ['n_atoms', 'C', 'N', 'O', 'F', 'H', 'H1C', 'H1N',
'H1O', 'C1C', 'C2C', 'C3C', 'C1N', 'C2N', 'C3N', 'C1O',
'C2O', 'C1F', 'N1N', 'N2N', 'N1O', 'N2O', 'N1F', 'O1O',
'O1F', 'R3', 'R4', 'R5', 'R6', 'R7', 'R8', 'R>8']
if get_stat_heads:
return stat_heads
if mol is None:
return None
key_idx_dict = dict(zip(stat_heads, range(len(stat_heads))))
stats = np.zeros((len(stat_heads), 1))
# process all bonds and store statistics about bond and ring counts
bond_stats = mol.get_bond_stats()
for key, value in bond_stats.items():
if key in key_idx_dict:
idx = key_idx_dict[key]
stats[idx, 0] = value
# store simple statistics about number of atoms
stats[key_idx_dict['n_atoms'], 0] = mol.n_atoms
for key in ['C', 'N', 'O', 'F', 'H']:
idx = key_idx_dict[key]
charge = mol.type_charges[key]
if charge in mol._unique_numbers:
stats[idx, 0] = np.sum(mol.numbers == charge)
return stats
def preprocess_molecules(mol_idcs, source_db, valence,
precompute_distances=True, remove_invalid=True,
invalid_list=None, print_progress=False):
'''
Checks the validity of selected molecules and collects atom, bond,
and ring count statistics for the valid structures. Molecules are classified as
invalid if they consist of disconnected parts or fail a valence check, where the
valency constraints of all atoms in a molecule have to be satisfied (e.g. carbon
has four bonds, nitrogen has three bonds etc.)
Args:
mol_idcs (array): the indices of molecules from the source database that
shall be examined
source_db (str): full path to the source database (in ase.db sqlite format)
valence (array): an array where the i-th entry contains the valency
constraint of atoms with atomic charge i (e.g. a valency of 4 at array
position 6 representing carbon)
precompute_distances (bool, optional): if True, the pairwise distances between
atoms in each molecule are computed and stored in the database (default:
True)
remove_invalid (bool, optional): if True, molecules that do not pass the
valency or connectivity checks (or are on the invalid_list) are removed from
the new database (default: True)
invalid_list (list of int, optional): precomputed list containing indices of
molecules that are marked as invalid (because they did not pass the
valency or connectivity checks in earlier runs, default: None)
print_progress (bool, optional): set True to print the progress in percent
(default: False)
Returns
list of ase.Atoms: list of all valid molecules
list of dict: list of corresponding dictionaries with data of each molecule
numpy.ndarray: (n_statistics x n_valid_molecules) matrix with atom, bond,
and ring count statistics
list of int: list with indices of molecules that failed the valency check
list of int: list with indices of molecules that consist of disconnected parts
int: number of molecules processed
'''
# initial setup
count = 0 # count the number of invalid molecules
disc = [] # store indices of disconnected molecules
inval = [] # store indices of invalid molecules
data_list = [] # store data fields of molecules for new db
mols = [] # store molecules (as ase.Atoms objects)
compressor = ConnectivityCompressor() # (de)compress sparse connectivity matrices
stats = np.empty((len(get_count_statistics(get_stat_heads=True)), 0))
n_all = len(mol_idcs)
with connect(source_db) as source_db:
# iterate over provided indices
for i in mol_idcs:
i = int(i)
# skip molecule if present in invalid_list and remove_invalid is True
if remove_invalid and invalid_list is not None:
if i in invalid_list:
continue
# get molecule from database
row = source_db.get(i + 1)
data = row.data
at = row.toatoms()
# get positions and atomic numbers
pos = at.positions
numbers = at.numbers
# center positions (using center of mass)
pos = pos - at.get_center_of_mass()
# order atoms by distance to center of mass
center_dists = np.sqrt(np.maximum(np.sum(pos ** 2, axis=1), 0))
idcs_sorted = np.argsort(center_dists)
pos = pos[idcs_sorted]
numbers = numbers[idcs_sorted]
# update positions and atomic numbers accordingly in Atoms object
at.positions = pos
at.numbers = numbers
# instantiate utility_classes.Molecule object
mol = Molecule(pos, numbers)
# get connectivity matrix (detecting bond orders with Open Babel)
con_mat = mol.get_connectivity()
# stop if molecule is disconnected (and therefore invalid)
if remove_invalid:
if is_disconnected(con_mat):
count += 1
disc += [i]
continue
# check if valency constraints of all atoms in molecule are satisfied:
# since the detection of bond orders for the connectivity matrix with Open
# Babel is unreliable for certain cases (e.g. some aromatic rings) we
# try to fix it manually (with heuristics) or by reshuffling the atom
# order (as the bond order detection of Open Babel is sensitive to the
# order of atoms)
nums = numbers
random_ord = np.arange(len(numbers))
for _ in range(10): # try 10 times before dismissing as invalid
if np.all(np.sum(con_mat, axis=0) == valence[nums]):
# valency is correct -> mark as valid and stop check
val = True
break
else:
# try to fix bond orders using heuristics
val = False
con_mat = mol.get_fixed_connectivity()
if np.all(np.sum(con_mat, axis=0) == valence[nums]):
# valency is now correct -> mark as valid and stop check
val = True
break
# shuffle atom order before checking valency again
random_ord = np.random.permutation(range(len(pos)))
mol = Molecule(pos[random_ord], numbers[random_ord])
con_mat = mol.get_connectivity()
nums = numbers[random_ord]
if remove_invalid:
if not val:
# stop if molecule is invalid (it failed the repeated valence checks)
count += 1
inval += [i]
continue
if precompute_distances:
# calculate pairwise distances of atoms and store them in data
dists = pdist(pos)[:, None]
data.update({'dists': dists})
# store compressed connectivity matrix in data
rand_ord_rev = np.argsort(random_ord)
con_mat = con_mat[rand_ord_rev][:, rand_ord_rev]
data.update(
{'con_mat': compressor.compress(con_mat)})
# update atom, bond, and ring count statistics
stats = np.hstack((stats, get_count_statistics(mol=mol)))
# add results to the lists
mols += [at]
data_list += [data]
# print progress if desired
if print_progress:
if i % 100 == 0:
print('\033[K', end='\r', flush=True)
print(f'{100 * (i + 1) / n_all:.2f}%', end='\r', flush=True)
return mols, data_list, stats, inval, disc, count
def _processing_worker(q_in, q_out, task):
'''
Simple worker function that repeatedly fulfills a task using transmitted input and
sends back the results until a stop signal is received. Can be used as target in
a multiprocessing.Process object.
Args:
q_in (multiprocessing.Queue): queue to receive a list with data. The first
entry signals whether worker can stop and the remaining entries are used as
input arguments to the task function
q_out (multiprocessing.Queue): queue to send results from task back
task (callable function): function that is called using the received data
'''
while True:
data = q_in.get(True) # receive data
if data[0]: # stop if stop signal is received
break
results = task(*data[1:]) # fulfill task with received data
q_out.put(results) # send back results
def _submit_jobs(qs_out, count, chunk_size, n_all, working_flag,
n_per_thread):
'''
Function that submits a job to preprocess molecules to every provided worker.
Args:
qs_out (list of multiprocessing.Queue): queues used to send data to workers (one
queue per worker)
count (int): index of the earliest, not yet preprocessed molecule in the db
chunk_size (int): number of molecules to be divided amongst workers
n_all (int): total number of molecules in the db
working_flag (array): flags indicating whether workers are running
n_per_thread (int): number of molecules to be given to each thread
Returns:
numpy.ndarray: array with flags indicating whether workers got
a job
int: index of the new earliest, not yet preprocessed molecule in
the db (after the submitted preprocessing jobs have been done)
'''
# calculate indices of molecules that shall be preprocessed by workers
idcs = np.arange(count, min(n_all, count + chunk_size))
start = 0
for i, q in enumerate(qs_out):
if start >= len(idcs):
# stop if no more indices are left to submit
break
end = start + n_per_thread
q.put((False, idcs[start:end])) # submit indices (and signal to not stop)
working_flag[i] = 1 # set flag that current worker got a job
start = end
new_count = count + len(idcs)
return working_flag, new_count
def preprocess_dataset(datapath, valence_list, n_threads, n_mols_per_thread=100,
logging_print=True, new_db_path=None, precompute_distances=True,
remove_invalid=True, invalid_list=None):
'''
Pre-processes all molecules of a dataset using the provided valency information.
Multi-threading is used to speed up the process.
Along with a new database containing the pre-processed molecules, a
"input_db_invalid.txt" file holding the indices of removed molecules (which
do not pass the valence or connectivity checks, omitted if remove_invalid is False)
and a "new_db_statistics.npz" file (containing atom, bond, and ring count statistics
for all molecules in the new database) are stored.
Args:
datapath (str): full path to dataset (ase.db database)
valence_list (list): the valence of atom types in the form
[type1 valence type2 valence ...]
n_threads (int): number of threads used (0 for no extra threads)
n_mols_per_thread (int, optional): number of molecules processed by each
thread at each iteration (default: 100)
logging_print (bool, optional): set True to show output with logging.info
instead of standard printing (default: True)
new_db_path (str, optional): full path to new database where pre-processed
molecules shall be stored (None to simply append "gen" to the name in
datapath, default: None)
precompute_distances (bool, optional): if True, the pairwise distances between
atoms in each molecule are computed and stored in the database (default:
True)
remove_invalid (bool, optional): if True, molecules that do not pass the
valency or connectivity check are removed from the new database (default:
True)
invalid_list (list of int, optional): precomputed list containing indices of
molecules that are marked as invalid (because they did not pass the
valency or connectivity checks in earlier runs, default: None)
'''
# convert paths
datapath = Path(datapath)
if new_db_path is None:
new_db_path = datapath.parent / (datapath.stem + 'gen.db')
else:
new_db_path = Path(new_db_path)
# compute array where the valency constraint of atom type i is stored at entry i
max_type = max(valence_list[::2])
valence = np.zeros(max_type + 1, dtype=int)
valence[valence_list[::2]] = valence_list[1::2]
def _print(x, end='\n', flush=False):
if logging_print:
logging.info(x)
else:
print(x, end=end, flush=flush)
with connect(datapath) as db:
n_all = db.count()
if n_all == 0:
_print('No molecules found in data base!')
sys.exit(0)
_print('\nPre-processing data...')
if logging_print:
_print(f'Processed: 0 / {n_all}...')
else:
_print(f'0.00%', end='', flush=True)
# initial setup
n_iterations = 0
chunk_size = n_threads * n_mols_per_thread
current = 0
count = 0 # count number of discarded (invalid etc.) molecules
disc = []
inval = []
stats = np.empty((len(get_count_statistics(get_stat_heads=True)), 0))
working_flag = np.zeros(n_threads, dtype=bool)
start_time = time.time()
if invalid_list is not None and remove_invalid:
invalid_list = {*invalid_list}
n_inval = len(invalid_list)
else:
n_inval = 0
with connect(new_db_path) as new_db:
if n_threads >= 1:
# set up threads and queues
threads = []
qs_in = []
qs_out = []
for i in range(n_threads):
qs_in += [Queue(1)]
qs_out += [Queue(1)]
threads += \
[Process(target=_processing_worker,
name=str(i),
args=(qs_out[-1],
qs_in[-1],
lambda x:
preprocess_molecules(x,
datapath,
valence,
precompute_distances,
remove_invalid,
invalid_list)))]
threads[-1].start()
# submit first round of jobs
working_flag, current = \
_submit_jobs(qs_out, current, chunk_size, n_all,
working_flag, n_mols_per_thread)
while np.any(working_flag == 1):
n_iterations += 1
# initialize new iteration
results = []
# gather results
for i, q in enumerate(qs_in):
if working_flag[i]:
results += [q.get()]
working_flag[i] = 0
# submit new jobs
working_flag, current_new = \
_submit_jobs(qs_out, current, chunk_size, n_all, working_flag,
n_mols_per_thread)
# store gathered results
for res in results:
mols, data_list, _stats, _inval, _disc, _c = res
for (at, data) in zip(mols, data_list):
new_db.write(at, data=data)
stats = np.hstack((stats, _stats))
inval += _inval
disc += _disc
count += _c
# print progress
if logging_print and n_iterations % 10 == 0:
_print(f'Processed: {current:6d} / {n_all}...')
elif not logging_print:
_print('\033[K', end='\r', flush=True)
_print(f'{100 * current / n_all:.2f}%', end='\r',
flush=True)
current = current_new # update current position in database
# stop worker threads and join
for i, q_out in enumerate(qs_out):
q_out.put((True,))
threads[i].join()
threads[i].terminate()
if logging_print:
_print(f'Processed: {n_all} / {n_all}...')
else:
results = preprocess_molecules(range(n_all), datapath, valence,
precompute_distances, remove_invalid,
invalid_list, print_progress=True)
mols, data_list, stats, inval, disc, count = results
for (at, data) in zip(mols, data_list):
new_db.write(at, data=data)
if not logging_print:
_print('\033[K', end='\n', flush=True)
_print(f'... successfully validated {n_all - count - n_inval} data '
f'points!', flush=True)
if invalid_list is not None:
_print(f'{n_inval} structures were removed because they are on the '
f'pre-computed list of invalid molecules!', flush=True)
if len(disc)+len(inval) > 0:
_print(f'CAUTION: Could not validate {len(disc)+len(inval)} additional '
f'molecules. These were also removed and their indices are '
f'appended to the list of invalid molecules stored at '
f'{datapath.parent / (datapath.stem + f"_invalid.txt")}',
flush=True)
np.savetxt(datapath.parent / (datapath.stem + f'_invalid.txt'),
np.append(np.sort(list(invalid_list)), np.sort(inval + disc)),
fmt='%d')
elif remove_invalid:
_print(f'Identified {len(disc)} disconnected structures, and {len(inval)} '
f'structures with invalid valence!', flush=True)
np.savetxt(datapath.parent / (datapath.stem + f'_invalid.txt'),
np.sort(inval + disc), fmt='%d')
_print('\nCompressing and storing statistics with numpy...')
np.savez_compressed(new_db_path.parent/(new_db_path.stem+f'_statistics.npz'),
stats=stats,
stat_heads=get_count_statistics(get_stat_heads=True))
end_time = time.time() - start_time
m, s = divmod(end_time, 60)
h, m = divmod(m, 60)
h, m, s = int(h), int(m), int(s)
_print(f'Done! Pre-processing needed {h:d}h{m:02d}m{s:02d}s.')
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
preprocess_dataset(**vars(args))