forked from atomistic-machine-learning/G-SchNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutility_classes.py
847 lines (738 loc) · 34.3 KB
/
utility_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
import operator
import re
import numpy as np
import openbabel as ob
import pybel
from multiprocessing import Process
from rdkit import Chem
from scipy.spatial.distance import squareform
class Molecule:
'''
Molecule class that allows to get statistics such as the connectivity matrix,
molecular fingerprint, canonical smiles representation, or ring count given
positions of atoms and their atomic numbers. Currently supports molecules made of
carbon, nitrogen, oxygen, fluorine, and hydrogen (such as in the QM9 benchmark
dataset). Mainly relies on routines from Open Babel and RdKit.
Args:
pos (numpy.ndarray): positions of atoms in euclidean space (n_atoms x 3)
atomic_numbers (numpy.ndarray): list with nuclear charge/type of each atom
(e.g. 1 for hydrogens, 6 for carbons etc.).
connectivity_matrix (numpy.ndarray, optional): optionally, a pre-calculated
connectivity matrix (n_atoms x n_atoms) containing the bond order between
atom pairs can be provided (default: None).
store_positions (bool, optional): set True to store the positions of atoms in
self.positions (only for convenience, not needed for computations, default:
False).
'''
type_infos = {1: {'name': 'H',
'n_bonds': 1},
6: {'name': 'C',
'n_bonds': 4},
7: {'name': 'N',
'n_bonds': 3},
8: {'name': 'O',
'n_bonds': 2},
9: {'name': 'F',
'n_bonds': 1},
}
type_charges = {'H': 1, 'C': 6, 'N': 7, 'O': 8, 'F': 9}
def __init__(self, pos, atomic_numbers, connectivity_matrix=None,
store_positions=False):
# set comparison metrics to None (will be computed just in time)
self._fp = None
self._fp_bits = None
self._can = None
self._mirror_can = None
self._inchi_key = None
self._bond_stats = None
self._fixed_connectivity = False
self._row_indices = {}
self._obmol = None
self._rings = None
self._n_atoms_per_type = None
self._connectivity = connectivity_matrix
# set statistics
self.n_atoms = len(pos)
self.numbers = atomic_numbers
self._unique_numbers = {*self.numbers} # set for fast query
self.positions = pos
if not store_positions:
self._obmol = self.get_obmol() # create obmol before removing pos
self.positions = None
def sanity_check(self):
'''
Check whether the sum of valence of all atoms can be divided by 2.
Returns:
bool: True if the test is passed, False otherwise
'''
count = 0
for atom in self.numbers:
count += self.type_infos[atom]['n_bonds']
if count % 2 == 0:
return True
else:
return False
def get_obmol(self):
'''
Retrieve the underlying Open Babel OBMol object.
Returns:
OBMol object: Open Babel OBMol representation
'''
if self._obmol is None:
if self.positions is None:
print('Error, cannot create obmol without positions!')
return
if self.numbers is None:
print('Error, cannot create obmol without atomic numbers!')
return
# use openbabel to infer bonds and bond order:
obmol = ob.OBMol()
obmol.BeginModify()
# set positions and atomic numbers of all atoms in the molecule
for p, n in zip(self.positions, self.numbers):
obatom = obmol.NewAtom()
obatom.SetAtomicNum(int(n))
obatom.SetVector(*p.tolist())
# infer bonds and bond order
obmol.ConnectTheDots()
obmol.PerceiveBondOrders()
obmol.EndModify()
self._obmol = obmol
return self._obmol
def get_fp(self):
'''
Retrieve the molecular fingerprint (the path-based FP2 from Open Babel is used,
which means that paths of length up to 7 are considered).
Returns:
pybel.Fingerprint object: moleculer fingerprint (use "fp1 | fp2" to
calculate the Tanimoto coefficient of two fingerprints)
'''
if self._fp is None:
# calculate fingerprint
self._fp = pybel.Molecule(self.get_obmol()).calcfp()
return self._fp
def get_fp_bits(self):
'''
Retrieve the bits set in the molecular fingerprint.
Returns:
Set of int: object containing the bits set in the molecular fingerprint
'''
if self._fp_bits is None:
self._fp_bits = {*self.get_fp().bits}
return self._fp_bits
def get_can(self):
'''
Retrieve the canonical SMILES representation of the molecule.
Returns:
String: canonical SMILES string
'''
if self._can is None:
# calculate canonical SMILES
self._can = pybel.Molecule(self.get_obmol()).write('can')
return self._can
def get_mirror_can(self):
'''
Retrieve the canonical SMILES representation of the mirrored molecule (the
z-coordinates are flipped).
Returns:
String: canonical SMILES string of the mirrored molecule
'''
if self._mirror_can is None:
# calculate canonical SMILES of mirrored molecule
self._flip_z() # flip z to mirror molecule using x-y plane
self._mirror_can = pybel.Molecule(self.get_obmol()).write('can')
self._flip_z() # undo mirroring
return self._mirror_can
def get_inchi_key(self):
'''
Retrieve the InChI-key of the molecule.
Returns:
String: InChI-key
'''
if self._inchi_key is None:
# calculate inchi key
self._inchi_key = pybel.Molecule(self.get_obmol()).\
write('inchikey')
return self._inchi_key
def _flip_z(self):
'''
Flips the z-coordinates of atom positions (to get a mirrored version of the
molecule).
'''
if self._obmol is None:
self.get_obmol()
for atom in ob.OBMolAtomIter(self._obmol):
x, y, z = atom.x(), atom.y(), atom.z()
atom.SetVector(x, y, -z)
self._obmol.ConnectTheDots()
self._obmol.PerceiveBondOrders()
def get_connectivity(self):
'''
Retrieve the connectivity matrix of the molecule.
Returns:
numpy.ndarray: (n_atoms x n_atoms) array containing the pairwise bond orders
between atoms (0 for no bond).
'''
if self._connectivity is None:
# get connectivity matrix
connectivity = np.zeros((self.n_atoms, len(self.numbers)))
for atom in ob.OBMolAtomIter(self.get_obmol()):
index = atom.GetIdx() - 1
# loop over all neighbors of atom
for neighbor in ob.OBAtomAtomIter(atom):
idx = neighbor.GetIdx() - 1
bond_order = neighbor.GetBond(atom).GetBO()
#print(f'{index}-{idx}: {bond_order}')
# do not count bonds between two hydrogen atoms
if (self.numbers[index] == 1 and self.numbers[idx] == 1
and bond_order > 0):
bond_order = 0
connectivity[index, idx] = bond_order
self._connectivity = connectivity
return self._connectivity
def get_ring_counts(self):
'''
Retrieve a list containing the sizes of rings in the symmetric smallest set
of smallest rings (S-SSSR from RdKit) in the molecule (e.g. [5, 6, 5] for two
rings of size 5 and one ring of size 6).
Returns:
List of int: list with ring sizes
'''
if self._rings is None:
# calculate symmetric SSSR with RdKit using the canonical smiles
# representation as input
can = self.get_can()
mol = Chem.MolFromSmiles(can)
if mol is not None:
ssr = Chem.GetSymmSSSR(mol)
self._rings = [len(ssr[i]) for i in range(len(ssr))]
else:
self._rings = [] # cannot count rings
return self._rings
def get_n_atoms_per_type(self):
'''
Retrieve the number of atoms in the molecule per type.
Returns:
numpy.ndarray: number of atoms in the molecule per type, where the order
corresponds to the order specified in Molecule.type_infos
'''
if self._n_atoms_per_type is None:
_types = np.array(list(self.type_infos.keys()), dtype=int)
self._n_atoms_per_type =\
np.bincount(self.numbers, minlength=np.max(_types)+1)[_types]
return self._n_atoms_per_type
def remove_unpicklable_attributes(self, restorable=True):
'''
Some attributes of the class cannot be processed by pickle. This method
allows to remove these attributes prior to pickling.
Args:
restorable (bool, optional): Set True to allow restoring the deleted
attributes later on (default: True)
'''
# set attributes which are not picklable (SwigPyObjects) to None
if restorable and self.positions is None and self._obmol is not None:
# store positions to allow restoring obmol object later on
pos = [atom.coords for atom in pybel.Molecule(self._obmol).atoms]
self.positions = np.array(pos)
self._obmol = None
self._fp = None
def tanimoto_similarity(self, other_mol, use_bits=True):
'''
Get the Tanimoto (fingerprint) similarity to another molecule.
Args:
other_mol (Molecule or pybel.Fingerprint/list of bits set):
representation of the second molecule (if it is not a Molecule object,
it needs to be a pybel.Fingerprint if use_bits is False and a list of bits
set in the fingerprint if use_bits is True).
use_bits (bool, optional): set True to calculate Tanimoto similarity
from bits set in the fingerprint (default: True)
Returns:
float: Tanimoto similarity to the other molecule
'''
if use_bits:
a = self.get_fp_bits()
b = other_mol.get_fp_bits() if isinstance(other_mol, Molecule) \
else other_mol
n_equal = len(a.intersection(b))
if len(a) + len(b) == 0: # edge case with no set bits
return 1.
return n_equal / (len(a)+len(b)-n_equal)
else:
fp_other = other_mol.get_fp() if isinstance(other_mol, Molecule)\
else other_mol
return self.get_fp() | fp_other
def _update_bond_orders(self, idc_lists):
'''
Updates the bond orders in the underlying OBMol object.
Args:
idc_lists (list of list of int): nested list containing bonds, i.e. pairs
of row indices (list1) and column indices (list2) which shall be updated
'''
con_mat = self.get_connectivity()
self._obmol.BeginModify()
for i in range(len(idc_lists[0])):
idx1 = idc_lists[0][i]
idx2 = idc_lists[1][i]
obbond = self._obmol.GetBond(int(idx1+1), int(idx2+1))
obbond.SetBO(int(con_mat[idx1, idx2]))
self._obmol.EndModify()
# reset fingerprints etc
self._fp = None
self._can = None
self._mirror_can = None
self._inchi_key = None
def get_fixed_connectivity(self, recursive_call=False):
'''
Attempts to fix the connectivity matrix using some heuristics (as some valid
QM9 molecules do not pass the valency check using the connectivity matrix
obtained with Open Babel, which seems to have problems with assigning correct
bond orders to aromatic rings containing Nitrogen).
Args:
recursive_call (bool, do not set True): flag that indicates a recursive
call (used internally, do not set to True)
Returns:
numpy.ndarray: (n_atoms x n_atoms) array containing the pairwise bond orders
between atoms (0 for no bond) after the attempted fix.
'''
# if fix has already been attempted, return the connectivity matrix
if self._fixed_connectivity:
return self._connectivity
# define helpers:
# increases bond order between two atoms in connectivity matrix
def increase_bond(con_mat, idx1, idx2):
con_mat[idx1, idx2] += 1
con_mat[idx2, idx1] += 1
return con_mat
# decreases bond order between two atoms in connectivity matrix
def decrease_bond(con_mat, idx1, idx2):
con_mat[idx1, idx2] -= 1
con_mat[idx2, idx1] -= 1
return con_mat
# returns only the rows of the connectivity matrix corresponding to atoms of
# certain types (and the indices of these atoms)
def get_typewise_connectivity(con_mat, types):
idcs = []
for type in types:
idcs += list(self._get_row_idcs(type))
return con_mat[idcs], np.array(idcs).astype(int)
# store old connectivity matrix for later comparison
old_mat = self.get_connectivity().copy()
# get connectivity matrix and find indices of N and C atoms
con_mat = self.get_connectivity()
if 6 not in self._unique_numbers and 7 not in self._unique_numbers:
# do not attempt fixing if there is no carbon and no nitrogen
return con_mat
N_mat, N_idcs = get_typewise_connectivity(con_mat, [7])
C_mat, C_idcs = get_typewise_connectivity(con_mat, [6])
NC_idcs = np.hstack((N_idcs, C_idcs)) # indices of all N and C atoms
NC_valences = self._get_valences()[NC_idcs] # array with valency constraints
# return connectivity if valency constraints of N and C atoms are already met
if np.all(np.sum(con_mat[NC_idcs], axis=1) == NC_valences):
return con_mat
# if a C or N atom is "overcharged" (total bond order too high) we decrease
# double to single bonds between N-N or N-C until it is not overcharged anymore
# (e.g. C=N=C -> C=N-C)
if 7 in self._unique_numbers: # only necessary if molecule contains N
for cur in NC_idcs:
type = self.numbers[cur]
if np.sum(con_mat[cur]) <= self.type_infos[type]['n_bonds']:
continue
if type == 6: # for carbon look only at nitrogen neighbors
neighbors = self._get_neighbors(cur, types=[7], strength=2)
else:
neighbors = self._get_neighbors(cur, types=[6, 7],
strength=2)
for neighbor in neighbors:
con_mat = decrease_bond(con_mat, cur, neighbor)
self._connectivity = con_mat
if np.sum(con_mat[cur]) == \
self.type_infos[type]['n_bonds']:
break
# get updated partial connectivity matrices for N and C
N_mat, _ = get_typewise_connectivity(con_mat, [7])
C_mat, _ = get_typewise_connectivity(con_mat, [6])
# increase total number of bonds by transferring the strength of a
# double C-N bond to two neighboring bonds, if the involved atoms
# are not yet saturated (e.g. H2C-H2C=N-H2C -> H2C=H2C-N=H2C)
if (np.sum(N_mat) < len(N_idcs) * 3 or np.sum(C_mat) < len(C_idcs) * 4) \
and 7 in self._unique_numbers:
for cur in NC_idcs:
type = self.numbers[cur]
if sum(con_mat[cur]) >= self.type_infos[type]['n_bonds']:
continue
CN_nbors = self._get_CN_neighbors(cur)
for nbor_1, nbor_2 in CN_nbors:
if con_mat[nbor_1, nbor_2] <= 1:
continue
else:
nbor_2_nbors = np.where(con_mat[nbor_2] == 1)[0]
for nbor_2_nbor in nbor_2_nbors:
nbor_2_nbor_type = self.numbers[nbor_2_nbor]
if (np.sum(con_mat[nbor_2_nbor]) <
self.type_infos[nbor_2_nbor_type]['n_bonds']):
con_mat = increase_bond(con_mat, cur, nbor_1)
con_mat = increase_bond(con_mat, nbor_2, nbor_2_nbor)
con_mat = decrease_bond(con_mat, nbor_1, nbor_2)
self._connectivity = con_mat
# increase bond strength between two undercharged neighbors C-N,
# C-C or N-N (e.g HN-CH2 -> HN=CH2, starting from those atoms with least
# available neighbors if there are multiple undercharged neighbors)
undercharged_pairs = True
while (undercharged_pairs):
NC_charges = np.sum(con_mat[NC_idcs], axis=1)
undercharged = NC_idcs[np.where(NC_charges < NC_valences)[0]]
partial_con_mat = con_mat[undercharged][:, undercharged]
# if non of the undercharged atoms are neighbors, stop
if np.sum(partial_con_mat) == 0:
break
# sort by number of undercharged neighbors
n_nbors = np.sum(partial_con_mat > 0, axis=0)
# mask indices with zero undercharged neighbors to ignore them when sorting
n_nbors[np.where(n_nbors == 0)[0]] = 1000
cur = np.argmin(n_nbors)
cur_nbor = np.where(partial_con_mat[cur] > 0)[0][0]
con_mat = increase_bond(con_mat, undercharged[cur], undercharged[cur_nbor])
self._connectivity = con_mat
# if the molecule still is not valid, try to flip double bonds if an atom
# forms a double bond and has at least one other neighbor that has too few bonds
# (e.g. C-N=C -> C=N-C) and repeat above heuristics with a recursive call of
# this function
if not recursive_call and \
not np.all(np.sum(con_mat[NC_idcs], axis=1) == NC_valences):
changed = False
candidates = np.where(np.any(con_mat[NC_idcs][:, NC_idcs] == 2, axis=0))[0]
for cand in NC_idcs[candidates]:
if np.sum(con_mat[cand, NC_idcs] == 2) == 0:
continue
NC_charges = np.sum(con_mat[NC_idcs], axis=1)
undercharged = NC_charges < NC_valences
uc_neighbors = np.logical_and(con_mat[cand, NC_idcs] == 1, undercharged)
if np.any(uc_neighbors):
uc_neighbor = NC_idcs[np.where(uc_neighbors)[0][0]]
oc_neighbor = NC_idcs[
np.where(con_mat[cand, NC_idcs] == 2)[0][0]]
con_mat = increase_bond(con_mat, cand, uc_neighbor)
con_mat = decrease_bond(con_mat, cand, oc_neighbor)
self._connectivity = con_mat
changed = True
if changed:
self._connectivity = self.get_fixed_connectivity(
recursive_call=True)
# store that fixing the connectivity matrix has already been attempted
if not recursive_call:
self._fixed_connectivity = True
if np.any(old_mat != self._connectivity):
# update bond orders in underlying OBMol object (where they changed)
self._update_bond_orders(np.where(old_mat != self._connectivity))
return self._connectivity
def _get_valences(self):
'''
Retrieve the valency constraints of all atoms in the molecule.
Returns:
numpy.ndarray: valency constraints (one per atom)
'''
valence = []
for atom in self.numbers:
valence += [self.type_infos[atom]['n_bonds']]
return np.array(valence)
def _get_CN_neighbors(self, idx):
'''
For a focus atom of type K returns indices of atoms C (carbon) and N (nitrogen)
on two-step paths of the form K-C-N (and K-C-C only for K=N since one atom
needs to be nitrogen).
Args:
idx (int): the index of the focus atom from which paths are examined
Returns:
list of lists: list1[i] contains an index of a direct neighbor of the
focus atom and list2[i] contains the index of a second neighbor on the
i-th identified two-step path
'''
con_mat = self.get_connectivity()
nbors = con_mat[idx] > 0
C_nbors = np.where(np.logical_and(self.numbers == 6, nbors))[0]
type = self.numbers[idx]
# mask types to exclude idx from neighborhood
_numbers = self.numbers.copy()
_numbers[idx] = 0
CN_nbors = np.where(np.logical_and(_numbers == 7, con_mat[C_nbors] > 0))
CN_nbors = [(C_nbors[CN_nbors[0][i]], CN_nbors[1][i])
for i in range(len(CN_nbors[0]))]
if type == 7: # for N atoms, also add C-C neighbors
CC_nbors = np.where(np.logical_and(
_numbers == 6, con_mat[C_nbors] > 0))
CC_nbors = [
(C_nbors[CC_nbors[0][i]], CC_nbors[1][i])
for i in range(len(CC_nbors[0]))]
CN_nbors += CC_nbors
return CN_nbors
def _get_neighbors(self, idx, types=None, strength=1):
'''
Retrieve the indices of neighbors of an atom.
Args:
idx (int): index of the atom
types (list of int, optional): restrict the returned neighbors to
contain only atoms of the specified types (set None to apply no type
filter, default: None)
strength (int, optional): restrict the returned neighbors to contain
only atoms with a certain minimal bond order to the atom at idx
(default: 1)
Returns:
list of int: indices of all neighbors that meet the requirements
'''
con_mat = self.get_connectivity()
neighbors = con_mat[idx] >= strength
if types is not None:
type_arr = np.zeros(len(neighbors)).astype(bool)
for type in types:
type_arr = np.logical_or(type_arr, self.numbers == type)
return np.where(np.logical_and(neighbors, type_arr))[0]
def get_bond_stats(self):
'''
Retrieve the bond and ring count of the molecule. The bond count is
calculated for every pair of types (e.g. C1N are all single bonds between
carbon and nitrogen atoms in the molecule, C2N are all double bonds between
such atoms etc.). The ring count is provided for rings from size 3 to 8 (R3,
R4, ..., R8) and for rings greater than size eight (R>8).
Returns:
dict (str->int): bond and ring counts
'''
if self._bond_stats is None:
# 1st analyze bonds
unique_types = np.sort(list(self._unique_numbers))
# get connectivity and read bonds from matrix
con_mat = self.get_connectivity()
d = {}
for i, type1 in enumerate(unique_types):
row_idcs = self._get_row_idcs(type1)
n_bonds1 = self.type_infos[type1]['n_bonds']
for type2 in unique_types[i:]:
col_idcs = self._get_row_idcs(type2)
n_bonds2 = self.type_infos[type2]['n_bonds']
max_bond_strength = min(n_bonds1, n_bonds2)
if n_bonds1 == n_bonds2: # exclude small trivial molecules
max_bond_strength -= 1
for n in range(1, max_bond_strength + 1):
id = self.type_infos[type1]['name'] + str(n) + \
self.type_infos[type2]['name']
d[id] = np.sum(con_mat[row_idcs][:, col_idcs] == n)
if type1 == type2:
d[id] = int(d[id]/2) # remove twice counted bonds
# 2nd analyze rings
ring_counts = self.get_ring_counts()
if len(ring_counts) > 0:
ring_counts = np.bincount(np.array(ring_counts))
n_bigger_8 = 0
for i in np.nonzero(ring_counts)[0]:
if i < 9:
d[f'R{i}'] = ring_counts[i]
else:
n_bigger_8 += ring_counts[i]
if n_bigger_8 > 0:
d[f'R>8'] = n_bigger_8
self._bond_stats = d
return self._bond_stats
def _get_row_idcs(self, type):
'''
Retrieve the indices of all atoms in the molecule corresponding to a selected
type.
Args:
type (int): the atom type (atomic number, e.g. 6 for carbon)
Returns:
list of int: indices of all atoms with the selected type
'''
if type not in self._row_indices:
self._row_indices[type] = np.where(self.numbers == type)[0]
return self._row_indices[type]
class ConnectivityCompressor():
'''
Utility class that provides methods to compress and decompress connectivity
matrices.
'''
def __init__(self):
pass
def compress(self, connectivity_matrix):
'''
Compresses a single connectivity matrix.
Args:
connectivity_matrix (numpy.ndarray): array (n_atoms x n_atoms)
containing the bond orders of bonds between atoms of a molecule
Returns:
dict (str/int->int): the length of the non-redundant connectivity
matrix (list with upper triangular part) and the indices of that list for
bond orders > 0
'''
smaller = squareform(connectivity_matrix) # get list of upper triangular part
d = {'n_entries': len(smaller)} # store length of list
for i in np.unique(smaller).astype(int): # store indices per bond order > 0
if i > 0:
d[int(i)] = np.where(smaller == i)[0]
return d
def decompress(self, idcs_dict):
'''
Retrieve the full (n_atoms x n_atoms) connectivity matrix from compressed
format.
Args:
idcs_dict (dict str/int->int): compressed connectivity matrix
(obtained with the compress method)
Returns:
numpy.ndarray: full connectivity matrix as an array of shape (n_atoms x
n_atoms)
'''
n_entries = idcs_dict['n_entries']
con_mat = np.zeros(n_entries)
for i in idcs_dict:
if isinstance(i, int) or i.isdigit():
con_mat[idcs_dict[i]] = int(i)
return squareform(con_mat)
def compress_batch(self, connectivity_batch):
'''
Compress a batch of connectivity matrices.
Args:
connectivity_batch (list of numpy.ndarray): list of connectivity matrices
Returns:
list of dict: batch of compressed connectivity matrices (see compress)
'''
dict_list = []
for matrix in connectivity_batch:
dict_list += [self.compress(matrix)]
return dict_list
def decompress_batch(self, idcs_dict_batch):
'''
Retrieve a list of full connectivity matrices from a batch of compressed
connectivity matrices.
Args:
idcs_dict_batch (list of dict): list with compressed connectivity
matrices
Return:
list numpy.ndarray: batch of full connectivity matrices (see decompress)
'''
matrix_list = []
for idcs_dict in idcs_dict_batch:
matrix_list += [self.decompress(idcs_dict)]
return matrix_list
class IndexProvider():
'''
Class which allows to filter a large set of molecules for desired structures
according to provided statistics. The filtering is done using a selection string
of the general format 'Statistics_nameDelimiterOperatorTarget_value'
(e.g. 'C,>8' to filter for all molecules with more than eight carbon atoms where
'C' is the statistic counting the number of carbon atoms in a molecule, ',' is the
delimiter, '>' is the operator, and '8' is the target value).
Args:
statistics (numpy.ndarray):
statistics of all molecules where columns correspond to molecules and rows
correspond to available statistics (n_statistics x n_molecules)
row_headlines (numpy.ndarray):
the names of the statistics stored in each row (e.g. 'F' for the number of
fluorine atoms or 'R5' for the number of rings of size 5)
default_filter (str, optional):
the default behaviour of the filter if no operator and target value are
given (e.g. filtering for 'F' will give all molecules with at least 1
fluorine atom if default_filter='>0' or all molecules with exactly 2
fluorine atoms if default_filter='==2', default: '>0')
delimiter (str, optional):
the delimiter used to separate names of statistics from the operator and
target value in the selection strings (default: ',')
'''
# dictionary mapping strings of available operators to corresponding function:
op_dict = {'<': operator.lt,
'<=': operator.le,
'==': operator.eq,
'=': operator.eq,
'!=': operator.ne,
'>': operator.gt,
'>=': operator.ge}
rel_re = re.compile('<=|<|={1,2}|!=|>=|>') # regular expression for operators
num_re = re.compile('[\-]*[0-9]+[.]*[0-9]*') # regular expression for target values
def __init__(self, statistics, row_headlines, default_filter='>0', delimiter=','):
self.statistics = np.array(statistics)
self.headlines = list(row_headlines)
self.default_relation = self.rel_re.search(default_filter).group(0)
self.default_number = float(self.num_re.search(default_filter).group(0))
self.delimiter = delimiter
def get_selected(self, selection_str, idcs=None):
'''
Retrieve the indices of all molecules which fulfill the selection criteria.
The selection string is of the general format
'Statistics_nameDelimiterOperatorTarget_value' (e.g. 'C,>8' to filter for all
molecules with more than eight carbon atoms where 'C' is the statistic counting
the number of carbon atoms in a molecule, ',' is the delimiter, '>' is the
operator, and '8' is the target value).
The following operators are available:
'<'
'<='
'=='
'!='
'>='
'>'
The target value can be any positive or negative integer or float value.
Multiple statistics can be summed using '+' (e.g. 'F+N,=0' gives all
molecules that have no fluorine and no nitrogen atoms).
Multiple filters can be concatenated using '&' (e.g. 'H,>8&C,=5' gives all
molecules that have more than 8 hydrogen atoms and exactly 5 carbon atoms).
Args:
selection_str (str): string describing the criterion(s) for filtering (build
as described above)
idcs (numpy.ndarray, optional): if provided, only this subset of all
molecules is filtered for structures fulfilling the selection criteria
Returns:
list of int: indices of all the molecules in the dataset that fulfill the
selection criterion(s)
'''
delimiter = self.delimiter
if idcs is None:
idcs = np.arange(len(self.statistics[0])) # take all to begin with
criterions = selection_str.split('&') # split criteria
for criterion in criterions:
rel_strs = criterion.split(delimiter)
# add multiple statistics if specified
heads = rel_strs[0].split('+')
statistics = self.statistics[self.headlines.index(heads[0])][idcs]
for head in heads[1:]:
statistics += self.statistics[self.headlines.index(head)][idcs]
if len(rel_strs) == 1:
relation = self.op_dict[self.default_relation](
statistics, self.default_number)
elif len(rel_strs) == 2:
rel = self.rel_re.search(rel_strs[1]).group(0)
num = float(self.num_re.search(rel_strs[1]).group(0))
relation = self.op_dict[rel](statistics, num)
new_idcs = np.where(relation)[0]
idcs = idcs[new_idcs]
return idcs
class ProcessQ(Process):
'''
Multiprocessing.Process class that runs a provided function using provided
(keyword) arguments and puts the result into a provided Multiprocessing.Queue
object (such that the result of the function can easily be obtained by the host
process).
Args:
queue (Multiprocessing.Queue): the queue into which the results of running
the target function will be put (the object in the queue will be a tuple
containing the provided name as first entry and the function return as
second entry).
name (str): name of the object (is returned as first value in the tuple put
into the queue.
target (callable object): the function that is executed in the process's run
method
args (list of any): sequential arguments target is called with
kwargs (dict (str->any)): keyword arguments target is called with
'''
def __init__(self, queue, name=None, target=None, args=(), kwargs={}):
super(ProcessQ, self).__init__(None, target, name, args, kwargs)
self._name = name
self._q = queue
self._target = target
self._args = args
self._kwargs = kwargs
def run(self):
'''
Method representing the process's activity.
Invokes the callable object passed as the target argument, if any, with
sequential and keyword arguments taken from the args and kwargs arguments,
respectively. Puts the string passed as name argument and the returned result
of the callable object into the queue as (name, result).
'''
if self._target is not None:
res = (self.name, self._target(*self._args, **self._kwargs))
self._q.put(res)