-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplif_cnn.py
955 lines (771 loc) · 37.8 KB
/
plif_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
#!/usr/bin/env python
# coding: utf-8
import os
import sys
import re
import torch
from glob import glob
from openbabel import pybel
import numpy as np
import random
import pickle
import warnings
import requests
import os
import glob
import pandas as pd
import openbabel
import numpy as np
from plip.structure.preparation import PDBComplex
from plip.exchange.report import BindingSiteReport
from rdkit import Chem
from rdkit.Chem import AllChem
from biopandas.pdb import PandasPdb
from Bio.PDB.SASA import ShrakeRupley
from Bio.PDB import PDBParser
from sklearn.model_selection import train_test_split
from dask.dataframe import from_pandas
from dask.multiprocessing import get
from pandarallel import pandarallel
pandarallel.initialize(progress_bar=False, nb_workers=250,use_memory_fs=False)
PYTORCH_ENABLE_MPS_FALLBACK=1
PYTORCH_ENABLE_SparseCPU_FALLBACK=1
warnings.filterwarnings("ignore")
from dask_jobqueue import SLURMCluster
train_grids=None
test_grids=None
rotations=9
full_batch=10
features_shape=94
# First training grids:
train_label=[]
# Second testing grids:
test_label=[]
# cluster = SLURMCluster(cores=1024,
# processes=12,
# memory="250GB",
# # account="hmslati",
# # walltime="01:00:00",
# queue="gpu-bigmem")
# PLEASE READ -> 45次实验分别进行10倍交叉验证,取平均
#Converts the protein-ligand complexes into 4D tensor.
class Feature_extractor():
def __init__(self):
self.atom_codes = {}
#'others' includs metal atoms and B atom. There are no B atoms on training and test sets.
# 89 to 102 will be reserved to PLIF features as follows:
# 89: hydrophobic
# 90: hbond
# 91: waterbridge
# 92: saltbridge
# 93: pistacking
# 94: pication
# 95: halogen
# 96: metal
# 97: Distances
# rarely occuring elements: ['4', '13', '22-23', '25', '28', '32', '40', '45', '47-52', '55', '75-76', '78', '80', '82']
others = ([4,13,25,28,32,40,45,55,78,80,82]+list(range(22,24))+list(range(47,53))+list(range(75,77)))
plif_specs=list(range(89,98))
#C and N atoms can be hybridized in three ways and S atom can be hybridized in two ways here.
#Hydrogen atom is also considered for feature extraction. I think phosphor atom has 3 or 5 as hyb states but
# in biological system its usually the same recurrent phosphate even in most small molecules so safe to assume one
# hybridization state for this purpose.
atom_types = [1,(6,1),(6,2),(6,3),(7,1),(7,2),(7,3),8,15,(16,2),(16,3),
34,9,17,35,53,11,12,13,14,5,19,20,25,29,28,30,33,3,27,24,26,31,42,79,44,74,others]+plif_specs
for i, j in enumerate(atom_types):
if type(j) is list:
for k in j:
self.atom_codes[k] = i
else:
self.atom_codes[j] = i
self.sum_atom_types = len(atom_types)
#Onehot encoding of each atom. The atoms in protein or ligand are treated separately.
def encode(self, atomic_num, orig_coords, plifs, molprotein):
encoding = np.zeros(self.sum_atom_types*2)
if molprotein == 1:
encoding[self.atom_codes[atomic_num]] = 1.0
for coord, plif_feats in plifs.items():
if [round(item) for item in coord] == [round(item) for item in orig_coords]:
encoding[self.atom_codes[89]] = 1.0 if plifs[coord][0] == 'hydrophobic' \
else 0.0
encoding[self.atom_codes[90]] = 1.0 if plifs[coord][0] == 'hbond' \
else 0.0
encoding[self.atom_codes[91]] = 1.0 if plifs[coord][0] == 'waterbridge' \
else 0.0
encoding[self.atom_codes[92]] = 1.0 if plifs[coord][0] == 'saltbridge' \
else 0.0
encoding[self.atom_codes[93]] = 1.0 if plifs[coord][0] == 'pistacking' \
else 0.0
encoding[self.atom_codes[94]] = 1.0 if plifs[coord][0] == 'pication' \
else 0.0
encoding[self.atom_codes[95]] = 1.0 if plifs[coord][0] == 'halogen' \
else 0.0
encoding[self.atom_codes[96]] = 1.0 if plifs[coord][0] == 'metal' \
else 0.0
#distance
encoding[self.atom_codes[97]] = plifs[coord][1]
else:
encoding[self.sum_atom_types+self.atom_codes[atomic_num]] = 1.0
for coord, plif_feats in plifs.items():
if [round(item) for item in coord] == [round(item) for item in orig_coords]:
encoding[self.sum_atom_types+self.atom_codes[89]] = 1.0 if plifs[coord][0] == 'hydrophobic' \
else 0.0
encoding[self.sum_atom_types+self.atom_codes[90]] = 1.0 if plifs[coord][0] == 'hbond' \
else 0.0
encoding[self.sum_atom_types+self.atom_codes[91]] = 1.0 if plifs[coord][0] == 'waterbridge' \
else 0.0
encoding[self.sum_atom_types+self.atom_codes[92]] = 1.0 if plifs[coord][0] == 'saltbridge' \
else 0.0
encoding[self.sum_atom_types+self.atom_codes[93]] = 1.0 if plifs[coord][0] == 'pistacking' \
else 0.0
encoding[self.sum_atom_types+self.atom_codes[94]] = 1.0 if plifs[coord][0] == 'pication' \
else 0.0
encoding[self.sum_atom_types+self.atom_codes[95]] = 1.0 if plifs[coord][0] == 'halogen' \
else 0.0
encoding[self.sum_atom_types+self.atom_codes[96]] = 1.0 if plifs[coord][0] == 'metal' \
else 0.0
#distance
encoding[self.sum_atom_types+self.atom_codes[97]] = plifs[coord][1]
return encoding
#Get atom coords and atom features from the complexes.
def get_features(self, molecule, plifs, molprotein):
coords = []
features = []
for atom in molecule:
coords.append(atom.coords)
if atom.atomicnum in [6,7,16]:
atomicnum = (atom.atomicnum,atom.hyb)
features.append(self.encode(atomicnum,atom.coords,plifs,molprotein))
else:
features.append(self.encode(atom.atomicnum,atom.coords,plifs,molprotein))
coords = np.array(coords, dtype=np.float32)
features = np.array(features, dtype=np.float32)
return coords, features
#Define the rotation matrixs of 3D stuctures.
def rotation_matrix(self, t, roller):
if roller==0:
return np.array([[1,0,0],[0,np.cos(t),np.sin(t)],[0,-np.sin(t),np.cos(t)]])
elif roller==1:
return np.array([[np.cos(t),0,-np.sin(t)],[0,1,0],[np.sin(t),0,np.cos(t)]])
elif roller==2:
return np.array([[np.cos(t),np.sin(t),0],[-np.sin(t),np.cos(t),0],[0,0,1]])
#Generate 3d grid or 4d tensor. Each grid represents a voxel. Each voxel represents the atom in it by onehot encoding of atomic type.
#Each complex in train set is rotated 9 times for data amplification.
#The complexes in core set are not rotated.
#The default resolution is 20*20*20.
def grid(self,grid, coords, features, frag_idx, resolution=1.0, max_dist=10.0, rotation_bool=True, max_frag=10, rotations=9):
assert coords.shape[1] == 3
assert coords.shape[0] == features.shape[0]
slider=frag_idx*20
x=y=z=np.array(range(-10,10),dtype=np.float32)+0.5
u=0
for i in range(len(coords)):
coord=coords[i]
# add/subtract 10 from the center
tmpx=abs(coord[0]-x)
tmpy=abs(coord[1]-y)
tmpz=abs(coord[2]-z)
if np.max(tmpx)<=19.5 and np.max(tmpy)<=19.5 and np.max(tmpz) <=19.5:
u+=1
# get the position of the closest point to coordinate which is found inside the grid
# append the features unto that slice
grid[0,slider+np.argmin(tmpx),slider+np.argmin(tmpy),slider+np.argmin(tmpz)] += torch.tensor(features[i])
if rotation_bool:
for rotation_idx in range(rotations):
theta = random.uniform(np.pi/18,np.pi/2)
roller = random.randrange(3)
coords = np.dot(coords, self.rotation_matrix(theta,roller))
for i in range(len(coords)):
coord=coords[i]
tmpx=abs(coord[0]-x)
tmpy=abs(coord[1]-y)
tmpz=abs(coord[2]-z)
if np.max(tmpx)<=19.5 and np.max(tmpy)<=19.5 and np.max(tmpz) <=19.5:
grid[rotation_idx+1,slider+np.argmin(tmpx),slider+np.argmin(tmpy),slider+np.argmin(tmpz)] += features[i]
return grid
class PLIF:
def __init__(self, PDB: str, MOL_SPLIT_START: int = 70, **kwargs):
kwargs.setdefault('aggr', 'add')
super(PLIF,self).__init__()
self.MOL_SPLIT_START=MOL_SPLIT_START
self.pdb=PDB
self.records=['ATOM']
self.values=['HOH','CL','MG','ZN','MN','CA']
self.ions=['CL','MG','ZN','MN','CA']
self.interaction_slices={"hydrophobic":[0,1,6,7,8,9,10],
"hbond":[0,1,7,11,13,15,16],
"waterbridge":[0,1,[6,7],11,13,16,17],
"saltbridge":[0,1,7,10,3,11,12],
"pistacking":[0,1,7,11,6,12,13],
"pication":[0,1,7,11,3,12,13],
"halogen":[0,1,7,10,12,14,15],
"metal":[0,1,11,8,6,17,16]}
self.column_names = ['RESNR', 'RESTYPE', 'DIST', 'LIG_IDX','PROT_IDX','FRAGMENT_ATOMS_COORDS', 'AA_COORDS']
self.path = os.getcwd()
def okToBreak(self, bond):
"""
Here we apply a bunch of rules to judge if the bond is OK to break.
Parameters
----------
bond :
RDkit MOL object
Returns
-------
Boolean :
OK or not to break.
"""
# See if the bond is in Ring (don't break that)
if bond.IsInRing():
return False
# We OK only single bonds to break
if bond.GetBondType() != Chem.rdchem.BondType.SINGLE:
return False
# Get the beginning atom of the bond
begin_atom = bond.GetBeginAtom()
# Get the ending atom of the bond
end_atom = bond.GetEndAtom()
# What kind of neighbors does these end and begenning atoms have? We need a family of no less than 5!
neighbor_end=list(end_atom.GetNeighbors())
neighbor_begin=list(begin_atom.GetNeighbors())
if (len(neighbor_end) + len(neighbor_begin)) <5:
return False
#for atm in neighbor_end:
#print(atm.GetAtomicNum())
#print(begin_atom.GetAtomicNum(), end_atom.GetAtomicNum(), MOL_SPLIT_START)
# Now check if end or begenning atoms are in ring (we dont wanna bother those)
if not(begin_atom.IsInRing() or end_atom.IsInRing()):
return False
elif begin_atom.GetAtomicNum() >= self.MOL_SPLIT_START or \
end_atom.GetAtomicNum() >= self.MOL_SPLIT_START:
return False
elif end_atom.GetAtomicNum() == 1:
return False
else:
return True
def undo_id_label (self, frag, split_id):
# I am trying to restore Hydrogens where the break happened
for i, atom in enumerate(frag.GetAtoms()):
if atom.GetAtomicNum() >= split_id:
atom.SetAtomicNum(1)
return frag
# Divide a molecule into fragments
def split_molecule(self, mol, pdb):
split_id = self.MOL_SPLIT_START
res = []
res_no_id=[]
to_check = [mol]
while len(to_check) > 0:
ms = self.spf(to_check.pop(), split_id)
if len(ms) == 1:
res += ms
else:
to_check += ms
split_id += 1
for frag in res:
res_no_id.append(self.undo_id_label(frag, self.MOL_SPLIT_START))
res_pdb_frags=[]
for idx, frag in enumerate(res_no_id):
w = Chem.PDBWriter(f"tmp_{pdb}_{self.MOL_SPLIT_START+idx}.pdb")
w.write(frag)
w.close()
unwanted_entries= ['CONECT', 'END']
with open(f"tmp_{pdb}_{self.MOL_SPLIT_START+idx}.pdb") as oldfile, open(f"{pdb}_{self.MOL_SPLIT_START+idx}.pdb", 'w') as newfile:
for line in oldfile:
if not any(unwanted_entry in line for unwanted_entry in unwanted_entries):
newfile.write(line)
data = data2 = ""
# Reading data from file1
with open(f"ATOM_{pdb}.pdb") as fp:
data = fp.read()
# Reading data from file2
with open(f"{pdb}_{self.MOL_SPLIT_START+idx}.pdb") as fp:
data2 = fp.read()
# Merging 2 files
# To add the data of file2
# from next line
#data += "\n"
data += data2
with open(f"HOH_{pdb}.pdb") as fp:
data3 = fp.read()
data += data3
with open (f"ATOM_{pdb}_{self.MOL_SPLIT_START+idx}.pdb", 'w') as fp:
fp.write(data)
res_pdb_frags.append(f"ATOM_{pdb}_{self.MOL_SPLIT_START+idx}.pdb")
return res_pdb_frags #create_chain(res)
# Function for doing all the nitty gritty splitting work.
# loops over bonds until bonds get exhausted or bonds are ok to break, whichever comes first. If ok to break, then each
# fragment needs to be checked individually again through the loop
def spf(self, mol, split_id):
bonds = mol.GetBonds()
for i in range(len(bonds)):
if self.okToBreak(bonds[i]):
mol = Chem.FragmentOnBonds(mol, [i])
# Dummy atoms are always added last
n_at = mol.GetNumAtoms()
print('Split ID', split_id)
mol.GetAtomWithIdx(n_at-1).SetAtomicNum(split_id)
mol.GetAtomWithIdx(n_at-2).SetAtomicNum(split_id)
return Chem.rdmolops.GetMolFrags(mol, asMols=True)
# If the molecule could not been split, return original molecule
return [mol]
#get_fragments(fragment_mols)
def retreive_plip_interactions(self, pdb_file):
"""
Retreives the interactions from PLIP.
Parameters
----------
pdb_file :
The PDB file of the complex.
Returns
-------
dict :
A dictionary of the binding sites and the interactions.
"""
protlig = PDBComplex() #instantiate the loader from PLIP
protlig.load_pdb(pdb_file) # load the pdb file
for ligand in protlig.ligands:
protlig.characterize_complex(ligand) # find ligands and analyze interactions
sites = {}
# loop over binding sites
for key, site in sorted(protlig.interaction_sets.items()):
binding_site = BindingSiteReport(site) # collect data about interactions
# tuples of *_features and *_info will be converted to pandas DataFrame
keys = (
"hydrophobic",
"hbond",
"waterbridge",
"saltbridge",
"pistacking",
"pication",
"halogen",
"metal"
)
# interactions is a dictionary which contains relevant information for each
# of the possible interactions: hydrophobic, hbond, etc. in the considered
# binding site. Each interaction contains a list with
# 1. the features of that interaction, e.g. for hydrophobic:
# ('RES_number', 'RES_type', ..., 'LIG_coord', 'PROT_coord')
# 2. information for each of these features, e.g. for hydrophobic
# ('RES_number', 'RES_type', ..., 'LIG_coord', 'PROT_coord')
interactions = {
k: [getattr(binding_site, k + "_features")] + getattr(binding_site, k + "_info")
for k in keys
}
sites[key] = interactions
return sites
def get_coords_prot(self, RESNR):
ppdb = PandasPdb()
ppdb.read_pdb(f"{self.pdb.split('.')[0]}_protein.pdb")
only_protein=ppdb.df['ATOM']
resnr_coords=[]
for i in RESNR:
resnr_coords.append(list(only_protein[only_protein['atom_number']==int(i)][['x_coord', 'y_coord', 'z_coord']].values[0]))
return resnr_coords
def interaction_df(self, split):
all_interactions_df = pd.DataFrame()
# We create the dictionary for the complex of interest:
for idx, s in enumerate(split):
pdb_id=s.split('.')[0]
raw=pdb_id.split('_')[1]
idx_frag=int(pdb_id.split('_')[2])
interactions_by_site = self.retreive_plip_interactions(f"{pdb_id}.pdb")
# Let’s see how many binding sites are detected:
# print(
# f"Number of binding sites detected in {pdb_id} : "
# f"{len(interactions_by_site)}\n"
# f"with {interactions_by_site.keys()}"
# )
# In this case, the first binding site containing ligand 03P will be further investigated.
index_of_selected_site = 0
selected_site = list(interactions_by_site.keys())[index_of_selected_site]
#print(selected_site)
valid_types = [
"hydrophobic",
"hbond",
"waterbridge",
"saltbridge",
"pistacking",
"pication",
"halogen",
"metal",
]
for _type in valid_types:
output_df=self.create_df_from_binding_site(raw, interactions_by_site[selected_site], idx+self.MOL_SPLIT_START, selected_site,
interactions_by_site,
interaction_type=_type)
all_interactions_df=all_interactions_df.append(output_df)
all_interactions_df = all_interactions_df[all_interactions_df['RESNR'].notna()]
all_interactions_df.to_csv(f"{self.path}/results_plifs/{raw}_plifs_and_properties.csv", index=False)
return all_interactions_df
# We can construct a pandas.DataFrame for a binding site and particular interaction type.
def create_df_from_binding_site(self, raw, selected_site_interactions, fragment_idx, selected_site,
interactions_by_site, interaction_type="hbond"):
"""
Creates a data frame from a binding site and interaction type.
Parameters
----------
selected_site_interactions : dict
Precalculated interactions from PLIP for the selected site
interaction_type : str
The interaction type of interest (default set to hydrogen bonding).
Returns
-------
pd.DataFrame :
DataFrame with information retreived from PLIP.
"""
# check if interaction type is valid:
valid_types = [
"hydrophobic",
"hbond",
"waterbridge",
"saltbridge",
"pistacking",
"pication",
"halogen",
"metal",
]
if interaction_type not in valid_types:
print("!!! Wrong interaction type specified. Hbond is chosen by default !!! \n")
interaction_type = "hbond"
def interaction_values(n):
try:
interactions=interactions_by_site[selected_site][interaction_type]
if type(n) is list:
return [interactions[1:][x][i] for x in
range(len(interactions[1:])) for i in n]
else:
return [interactions[1:][x][n] for x in
range(len(interactions[1:]))]
except Exception:
return None
if interactions_by_site[selected_site][interaction_type][1:]:
#print(list(map(interaction_values, self.interaction_slices[interaction_type])), self.column_names)
selected_feats=list(map(interaction_values, self.interaction_slices[interaction_type]))
#print(selected_feats)
try:
if int(selected_feats[4])>int(selected_feats[3]):
selected_feats[3], selected_feats[4] = selected_feats[4], selected_feats[3]
except:
if int(any(selected_feats[4]))>int(any(selected_feats[3])):
selected_feats[3], selected_feats[4] = selected_feats[4], selected_feats[3]
df = pd.DataFrame(
# data is stored AFTER the columns names
[selected_feats],
# column names are always the first element - we skipped that in the above - we are gonna use that for naming the df
columns = self.column_names
)
df["INTERACTION_TYPE"]=interaction_type
try:
checked_coords=self.get_coords_prot(selected_feats[4][0].split(',') if ',' in selected_feats[4][0] \
else selected_feats[4])
except:
checked_coords=selected_feats[6]
df["AA_COORDS"]=[checked_coords]
#[self.get_coords_prot(selected_feats[4].split(','))]
df["FRAGMENT_ATOMS_COORDS"]=[selected_feats[5]]
#[self.get_coords_lig(selected_feats[3].split(','))]
df['FRAGMENT_ID']=fragment_idx
# ideally we would like to exclude waters from further processing. Threrfore let us reduce any waterbridge
# interaction to the eucladean distance in order to omit water
if interaction_type == "waterbridge":
df['DIST']=[[np.linalg.norm(x) for x in df['DIST'].to_numpy()]]
# also deal with one distance value and two coords, this is common in saltbridge interactions:
if len(checked_coords) == len(selected_feats[2])*2:
df['DIST']=[selected_feats[2] + selected_feats[2]]
else:
df= pd.DataFrame({'RESNR':[None], 'RESTYPE':[None], 'DIST':[None], 'LIG_IDX':[None],'PROT_IDX':[None],
'INTERACTION_TYPE':[interaction_type], "AA_COORDS": [None], "FRAGMENT_ATOMS_COORDS":[None],
'FRAGMENT_ID':[str(fragment_idx)]})
return df
def pdb_2_sdf(self, pdb):
obConversion = openbabel.OBConversion()
obConversion.SetInAndOutFormats("pdb", "sdf")
mol = openbabel.OBMol()
obConversion.ReadFile(mol, pdb) # Open Babel will uncompress automatically
mol.AddHydrogens()
obConversion.WriteFile(mol, f"{pdb.split('.')[0]}.sdf")
return f"{pdb.split('.')[0]}.sdf"
def sdf_2_pdb(self, sdf):
obConversion = openbabel.OBConversion()
obConversion.SetInAndOutFormats("sdf", "pdb")
mol = openbabel.OBMol()
obConversion.ReadFile(mol, sdf) # Open Babel will uncompress automatically
mol.AddHydrogens()
obConversion.WriteFile(mol, f"{sdf.split('.')[0]}.pdb")
return f"HETATM_{sdf.split('.')[0]}.pdb"
def save_bpdb(self, pdb,ppdb, record):
ppdb.to_pdb(path=f"{record}_{pdb.split('.')[0].split('_')[0]}.pdb",
records=[record],
gz=False,
append_newline=True)
def get_HOH_pdb(self, pdb):
ppdb = PandasPdb()
ppdb.read_pdb(pdb)
ppdb.df['HETATM']=ppdb.df['HETATM'].loc[ppdb.df['HETATM']['residue_name'].isin(self.values)]
ppdb.to_pdb(path=f"HOH_{pdb.split('.')[0].split('_')[0]}.pdb",
records=['HETATM'],
gz=False,
append_newline=True)
def keep_relevant_hetatm(self, pdb):
raw=str(self.pdb).split('.')[0]
with open(pdb) as f1, open(f"ATOM_{pdb.split('.')[0].split('_')[0]}.pdb", 'w') as f2:
for line in f1:
if 'ATOM' in line:
f2.write(line)
with open(f'{raw}_ligand.pdb') as f1, open(f"HETATM_{pdb.split('.')[0].split('_')[0]}.pdb", 'w') as f2:
for line in f1:
if ('HETATM' in line) and not any(ion in line for ion in self.ions):
f2.write(line)
try:
self.get_HOH_pdb(pdb)
except:
with open(pdb) as f1, open(f"HOH_{pdb.split('.')[0].split('_')[0]}.pdb", 'w') as f2:
for line in f1:
if ('HETATM' in line) and any(ion in line for ion in self.ions):
f2.write(line)
return
def fragment_and_plif(self):
path = os.getcwd()
if not os.path.exists('results_plifs'):
os.mkdir(f'{path}/results_plifs')
raw=str(self.pdb).split('.')[0]
self.sdf_2_pdb(f'{raw}_ligand.sdf')
self.keep_relevant_hetatm(f'{raw}_protein.pdb')
fragment_mols = Chem.SDMolSupplier(str(f'{raw}_ligand.sdf'), removeHs=True, sanitize=False)
fragment_mols_alt = Chem.MolFromMol2File(f'{raw}_ligand.mol2', sanitize=True, removeHs=True)
content = open(f'{raw}_ligand.pdb').read()
hets=re.findall("^HETATM (.*)", content, re.M)
if len(hets)<5:
# Read in the file
with open(f'{raw}_ligand.pdb', 'r') as file :
filedata = file.read()
# Replace the target string
filedata = filedata.replace('ATOM ', 'HETATM')
# Write the file out again
with open(f'{raw}_ligand.pdb', 'w') as file:
file.write(filedata)
try:
fragment_mols = Chem.RemoveHs(fragment_mols[0])
output_df = self.interaction_df(self.split_molecule(fragment_mols,raw))
except:
try:
fragment_mols = Chem.SDMolSupplier(str(f'{raw}_ligand.sdf'), removeHs=True, sanitize=False)
output_df = self.interaction_df(self.split_molecule(fragment_mols,raw))
except:
try:
output_df = self.interaction_df(self.split_molecule( Chem.MolFromMol2File(fragment_mols_alt)))
except:
try:
fragment_mols = AllChem.MolFromPDBFile(f'{raw}_ligand.pdb')
output_df = self.interaction_df(self.split_molecule(fragment_mols,raw))
except:
try:
fragment_mols = AllChem.MolFromPDBFile(f'HETATM_{raw}.pdb')
output_df = self.interaction_df(self.split_molecule(fragment_mols,raw))
except:
# raise Exception(f"Sorry, the pdb id: {raw} needs chekcing")
output_df= pd.DataFrame({'FRAGMENT_ID':[None], 'AA_COORDS':[None],
'FRAGMENT_ATOMS_COORDS':[None],
'INTERACTION_TYPE':[None],'DIST':[None]})
print(f"Sorry, the pdb id: {raw} needs chekcing")
os.chdir(f'{path}')
return output_df.groupby('FRAGMENT_ID')['AA_COORDS', 'FRAGMENT_ATOMS_COORDS','INTERACTION_TYPE','DIST'].agg(list)
def kd_equalizer (value):
if 'mM' in value.split('=')[1]:
return float(value.split('m')[0].split('=')[1]) / 1000
elif 'uM' in value.split('=')[1]:
return float(value.split('u')[0].split('=')[1]) / 1000000
elif 'nM' in value.split('=')[1]:
return float(value.split('n')[0].split('=')[1]) / 1000000000
elif 'pM' in value.split('=')[1]:
return float(value.split('p')[0].split('=')[1]) / 1000000000000
elif 'fM' in value.split('=')[1]:
return float(value.split('f')[0].split('=')[1]) / 1000000000000000
def dask_plif_cnn_train(row_pdb, row_kd):
train_grids=None
train_label=[]
pdb_id = row_pdb
print('pdb_id', pdb_id)
os.chdir(f'/groups/cherkasvgrp/share/progressive_docking/hmslati/plif_cnn/general_refined_set/{pdb_id}')
raw=pdb_id
path = os.getcwd()
fileList = []
fileList.extend(glob.glob(f'{path}/{raw}_7*pdb'))
fileList.extend(glob.glob(f'{path}/{raw}_8*pdb'))
fileList.extend(glob.glob(f'{path}/{raw}_9*pdb'))
fileList.extend(glob.glob(f'{path}/*_{raw}*pdb'))
fileList.extend(glob.glob(f'{path}/*_{raw}*sdf'))
for filePath in fileList:
try:
os.remove(filePath)
except:
print("Error while deleting file : ", filePath)
df_plifSpecs = PLIF(PDB = f'{pdb_id}.pdb').fragment_and_plif()
if not len(df_plifSpecs):
return
train_label.extend([row_kd]*10)
single_pdb_frags = []
for idx, row in df_plifSpecs.iterrows():
temp_plifs_prot={}
temp_plifs_frag={}
## do something with fragment_idx . i.e. open the pdb and do your shit with encoding\
for aa_atm_coord_list, frag_lig_atm_coord_list, interaction, dist_list in zip (row['AA_COORDS'],
row['FRAGMENT_ATOMS_COORDS'],
row['INTERACTION_TYPE'],
row['DIST']):
# because sometimes salt bridges makes two concurrent connections so it is possible that we have one distance
# for two amino acids or ligand atoms! Encoding by atom is crazy fun
for dist, aa_atm_coord, frag_lig_atm_coord in zip (dist_list, aa_atm_coord_list,
frag_lig_atm_coord_list):
temp_plifs_prot[tuple(aa_atm_coord)]=[interaction,dist]
temp_plifs_frag[tuple(frag_lig_atm_coord)]=[interaction,dist]
pdb = next(pybel.readfile('pdb',os.path.join(path,'ATOM_' + pdb_id + '.pdb')))
ligand = next(pybel.readfile('pdb',os.path.join(path, pdb_id + f'_{str(idx)}'+'.pdb')))
single_pdb_frags.append((pdb,ligand,temp_plifs_prot,temp_plifs_frag))
grid=torch.zeros((full_batch,400,400,400,features_shape))
for idx, mols in enumerate(single_pdb_frags):
print(len(single_pdb_frags), idx)
# threads = multiprocessing.Pool(len(single_pdb_frags))
# threads.map(func, arg_list)
coords1, features1 = Feature.get_features(mols[0],mols[2],1)
coords2, features2 = Feature.get_features(mols[1],mols[3],0)
# get the center point of protein
center=(np.max(coords2,axis=0)+np.min(coords2,axis=0))/2
coords=np.concatenate([coords1,coords2],axis = 0)
features=np.concatenate([features1,features2],axis = 0)
assert len(coords) == len(features)
# zero the coordinates
coords = coords-center
grid=Feature.grid(grid,coords,features,idx, rotation_bool=True)
if train_grids is None:
train_grids = grid.to_sparse()
else:
train_grids = torch.cat((train_grids,grid.to_sparse()), 0)
print(train_grids.shape)
raw=pdb_id
path = os.getcwd()
fileList = []
fileList.extend(glob.glob(f'{path}/{raw}_7*pdb'))
fileList.extend(glob.glob(f'{path}/{raw}_8*pdb'))
fileList.extend(glob.glob(f'{path}/{raw}_9*pdb'))
fileList.extend(glob.glob(f'{path}/*_{raw}*pdb'))
fileList.extend(glob.glob(f'{path}/*_{raw}*sdf'))
for filePath in fileList:
try:
os.remove(filePath)
except:
print("Error while deleting file : ", filePath)
print("Memory utilised (bytes): ", sys.getsizeof(train_grids))
with open('train_grids.pkl','wb') as f:
pickle.dump(train_grids, f)
#Save the label data of training and test set.
with open('train_label.pkl','wb') as f:
pickle.dump(train_label,f)
os.chdir(p_directory)
return pdb_id
def dask_plif_cnn_test(row_pdb, row_kd):
test_grids=None
test_label=[]
pdb_id = row_pdb
print('pdb_id', pdb_id)
os.chdir(f'/groups/cherkasvgrp/share/progressive_docking/hmslati/plif_cnn/general_refined_set/{pdb_id}')
raw=pdb_id
path = os.getcwd()
fileList = []
fileList.extend(glob.glob(f'{path}/{raw}_7*pdb'))
fileList.extend(glob.glob(f'{path}/{raw}_8*pdb'))
fileList.extend(glob.glob(f'{path}/{raw}_9*pdb'))
fileList.extend(glob.glob(f'{path}/*_{raw}*pdb'))
fileList.extend(glob.glob(f'{path}/*_{raw}*sdf'))
for filePath in fileList:
try:
os.remove(filePath)
except:
print("Error while deleting file : ", filePath)
df_plifSpecs = PLIF(PDB = f'{pdb_id}.pdb').fragment_and_plif()
if not len(df_plifSpecs):
return
test_label.extend([row_kd])
single_pdb_frags = []
print(len(single_pdb_frags))
for idx, row in df_plifSpecs.iterrows():
temp_plifs_prot={}
temp_plifs_frag={}
## do something with fragment_idx . i.e. open the pdb and do your shit with encoding\
for aa_atm_coord_list, frag_lig_atm_coord_list, interaction, dist_list in zip (row['AA_COORDS'],
row['FRAGMENT_ATOMS_COORDS'],
row['INTERACTION_TYPE'],
row['DIST']):
# because sometimes salt bridges makes two concurrent connections so it is possible that we have one distance
# for two amino acids or ligand atoms! Encoding by atom is crazy fun
for dist, aa_atm_coord, frag_lig_atm_coord in zip (dist_list, aa_atm_coord_list,
frag_lig_atm_coord_list):
temp_plifs_prot[tuple(aa_atm_coord)]=[interaction,dist]
temp_plifs_frag[tuple(frag_lig_atm_coord)]=[interaction,dist]
pdb = next(pybel.readfile('pdb',os.path.join(path,'ATOM_' + pdb_id + '.pdb')))
ligand = next(pybel.readfile('pdb',os.path.join(path, pdb_id + f'_{str(idx)}'+'.pdb')))
single_pdb_frags.append((pdb,ligand,temp_plifs_prot,temp_plifs_frag))
grid=torch.zeros((1,400,400,400,features_shape))
for idx, mols in enumerate(single_pdb_frags):
coords1, features1 = Feature.get_features(mols[0],mols[2],1)
coords2, features2 = Feature.get_features(mols[1],mols[3],0)
# get the center point of protein
center=(np.max(coords2,axis=0)+np.min(coords2,axis=0))/2
coords=np.concatenate([coords1,coords2],axis = 0)
features=np.concatenate([features1,features2],axis = 0)
assert len(coords) == len(features)
# zero the coordinates
coords = coords-center
grid=Feature.grid(grid,coords,features,idx, rotation_bool=False)
if test_grids is None:
test_grids = grid.to_sparse()
else:
test_grids = torch.cat((test_grids,grid.to_sparse()), 0)
print(test_grids.shape)
raw=pdb_id
path = os.getcwd()
fileList = []
fileList.extend(glob.glob(f'{path}/{raw}_7*pdb'))
fileList.extend(glob.glob(f'{path}/{raw}_8*pdb'))
fileList.extend(glob.glob(f'{path}/{raw}_9*pdb'))
fileList.extend(glob.glob(f'{path}/*_{raw}*pdb'))
fileList.extend(glob.glob(f'{path}/*_{raw}*sdf'))
for filePath in fileList:
try:
os.remove(filePath)
except:
print("Error while deleting file : ", filePath)
with open('test_grids.pkl','wb') as f:
pickle.dump(test_grids, f)
#Save the label data of training and test set.
with open('test_label.pkl','wb') as f:
pickle.dump(test_label,f)
os.chdir(p_directory)
return pdb_id
if __name__ == "__main__":
os.chdir(f'/groups/cherkasvgrp/share/progressive_docking/hmslati/plif_cnn/')
Feature = Feature_extractor()
p_directory = os.getcwd()
dask_plif_cnn_train(x.PDB_code, x.Kd_Ki)
# general=pd.read_csv('INDEX_general_PL_data.2020', sep=',')
# refined=pd.read_csv('INDEX_refined_data.2020', sep=',')
# general=general[general["Kd/Ki"].str.contains('IC|EC|>|<')==False]
# refined=refined[refined["Kd/Ki"].str.contains('IC|EC|>|<')==False]
# general["Kd/Ki"] = general["Kd/Ki"].str.replace('~','=')
# refined["Kd/Ki"] = refined["Kd/Ki"].str.replace('~','=')
# general['Kd/Ki']=general['Kd/Ki'].apply(lambda x: kd_equalizer(x))
# refined['Kd/Ki']=refined['Kd/Ki'].apply(lambda x: kd_equalizer(x))
# merged_PDBBind=general.append(refined) \
# .sample(frac=1) \
# .sample(frac=1) \
# .reset_index(drop=True) \
# .drop_duplicates(subset='PDB_code', keep="first")
## merged_PDBBind=pd.read_csv('merged_PDBBind.csv')
# merged_PDBBind.rename(columns={'Kd/Ki': 'Kd_Ki'}, inplace=True)
# merged_PDBBind[merged_PDBBind['PDB_code'].str.contains("3bho")==False]
## train_df, test_df = train_test_split(merged_PDBBind, test_size=0.1)
# merged_PDBBind.to_csv('merged_PDBBind.csv', index=False)
## train_df.to_csv('train_df.csv', index=False)
## test_df.to_csv('test_df.csv', index=False)
## train_df.parallel_apply(lambda x: dask_plif_cnn_train(x.PDB_code, x.Kd_Ki), axis=1)
## test_df.parallel_apply(lambda x: dask_plif_cnn_test(x.PDB_code, x.Kd_Ki), axis=1)