-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathHome.py
488 lines (411 loc) · 19.5 KB
/
Home.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import streamlit as st
import pandas as pd
from datetime import datetime, timezone
import plotly.graph_objs as go
import plotly.express as px
from plotly.subplots import make_subplots
import utils
from datetime import datetime
import numpy as np
st.set_page_config(
page_title="Data - Gitcoin Grants",
page_icon="assets/favicon.png",
layout="wide",
initial_sidebar_state="expanded"
)
## DEPLOYED ON HEROKU
# https://gitcoin-grants-51f2c0c12a8e.herokuapp.com/
def get_cumulative_amountUSD_time_series_chart(dfv, starting_time, ending_time, color_map):
dfv_grouped = dfv.groupby(['round_name', dfv['block_timestamp'].dt.floor('H')])['amountUSD'].sum().reset_index()
dfv_grouped.set_index(['round_name', 'block_timestamp'], inplace=True)
dfv_grouped = dfv_grouped.reindex(pd.MultiIndex.from_product([dfv_grouped.index.get_level_values(0).unique(), pd.date_range(start=dfv_grouped.index.get_level_values(1).min(), end=dfv_grouped.index.get_level_values(1).max(), freq='H')], names=['round_name', 'block_timestamp']), fill_value=0)
dfv_cumulative = dfv_grouped.groupby(level=0).cumsum()
fig = px.area(dfv_cumulative, x=dfv_cumulative.index.get_level_values(1), y='amountUSD', color=dfv_cumulative.index.get_level_values(0), labels={'amountUSD': 'Total Donations (USD)', 'block_timestamp': 'Time'}, title='Cumulative Donations Over Time (USD) by Round', color_discrete_map=color_map)
fig.update_layout(xaxis_range=[starting_time, min(ending_time, dfv['block_timestamp'].max())], showlegend=True, legend_title_text='Round')
fig.update_xaxes(title_text='Time', nticks=5)
fig.update_yaxes(tickprefix="$", tickformat="2s", title_text='Cumulative Donations (USD)')
fig.update_traces(hovertemplate='<b>Round:</b> %{fullData.name}<br><b>Time:</b> %{x}<br><b>Total Donations:</b> $%{y:,.2f}')
return fig
def create_token_distribution_chart(hourly_contributions):
# Group by token and sum the total_amount
token_data = hourly_contributions.groupby('token_code')['total_amount'].sum().reset_index()
token_data = token_data.sort_values('total_amount', ascending=False)
# Calculate percentages
total = token_data['total_amount'].sum()
token_data['percentage'] = token_data['total_amount'] / total * 100
# Define color mapping for common tokens
token_colors = {
'ETH': '#627eea',
'OP': '#ff0420',
'USDC': '#2775ca',
'CELO': '#35d07f',
'USDGLO': '#ffcc00',
'ARB': '#28a0f0',
'GTC': '#ff6b6b',
'DAI': '#f4b731',
'MATIC': '#8247e5'
}
# Assign colors to tokens, use a default color if not in the mapping
token_data['color'] = token_data['token_code'].map(token_colors).fillna('#cccccc')
# Create the donut chart
fig = go.Figure(data=[go.Pie(
labels=token_data['token_code'],
values=token_data['total_amount'],
hole=.4,
textinfo='label+percent',
hovertemplate="<b>%{label}</b><br>Amount: $%{value:.2f}<br>Percentage: %{percent}<extra></extra>",
marker=dict(colors=token_data['color']), # Use the mapped colors
)])
# Format total amount with appropriate suffix (K, M, B)
if total >= 1e9:
total_formatted = f"${total/1e9:.1f}B"
elif total >= 1e6:
total_formatted = f"${total/1e6:.1f}M"
elif total >= 1e3:
total_formatted = f"${total/1e3:.1f}K"
else:
total_formatted = f"${total:.2f}"
fig.update_layout(
title="Contributions (in USD) by Token",
annotations=[dict(text=f'Total<br>{total_formatted}', x=0.5, y=0.5, font_size=16, showarrow=False)],
showlegend=True,
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
return fig
def calculate_qf_score(donations):
return (np.sum(np.sqrt(donations)))**2
def create_project_highlights(dfp):
dfp['average_donation'] = dfp['amountUSD'] / dfp['votes']
# Create visualization
fig = go.Figure()
# Scatter plot for all projects with log scale
fig.add_trace(go.Scatter(
x=dfp['votes'],
y=dfp['amountUSD'],
mode='markers',
marker=dict(
size=dfp['votes'],
sizemode='area',
sizeref=2.*max(dfp['votes'])/(25.**2),
sizemin=4,
color='#8e81f0',
opacity=0.7
),
text=dfp['title'],
hovertemplate="<b>%{text}</b><br>" +
"Total Raised: $%{y:,.2f}<br>" +
"Unique Donors: %{x}<br>" +
"<extra></extra>",
showlegend=False
))
# Highlight top projects
top_funded = dfp.nlargest(3, 'amountUSD')
top_donors = dfp.nlargest(3, 'votes')
top_trending = dfp.nlargest(3, 'average_donation')
fig.update_layout(
#title=None,
xaxis_title="Log. Unique Donors",
yaxis_title="Log. Total Raised (USD)",
height=600,
plot_bgcolor='white',
xaxis=dict(
showgrid=False,
zeroline=False,
linecolor='black',
linewidth=2,
showline=True,
type='log'
),
yaxis=dict(
showgrid=False,
zeroline=False,
linecolor='black',
linewidth=2,
showline=True,
type='log'
),
font=dict(family="monospace"),
)
st.plotly_chart(fig, use_container_width=True)
# Legend
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("🏆 Top Funded")
for _, project in top_funded.iterrows():
st.write(f"**{project['title'].strip()}**: ${project['amountUSD']:,.2f}")
with col2:
st.subheader("👥 Most Donors")
for _, project in top_donors.iterrows():
st.write(f"**{project['title'].strip()}**: {project['votes']:,}")
with col3:
st.subheader("💪🏾 Highest Average")
for _, project in top_trending.iterrows():
st.write(f"**{project['title'].strip()}**: ${project['average_donation']:,.2f}")
def get_combined_donation_chart(hourly_contributions, starting_time, ending_time, color_map):
# Aggregate all tokens and chains by hour
hourly_totals = hourly_contributions.groupby('hour')['total_amount'].sum().reset_index()
# Calculate cumulative sum
cumulative_totals = hourly_totals.copy()
cumulative_totals['total_amount'] = cumulative_totals['total_amount'].cumsum()
# Create figure with secondary y-axis
fig = make_subplots(specs=[[{"secondary_y": True}]])
# Add hourly bars
fig.add_trace(
go.Bar(
x=hourly_totals['hour'],
y=hourly_totals['total_amount'],
name="Hourly Contributions",
marker_color='#8e81f0'
),
secondary_y=False,
)
# Add cumulative line
fig.add_trace(
go.Scatter(
x=cumulative_totals['hour'],
y=cumulative_totals['total_amount'],
name="Cumulative Donations",
line=dict(color='#000000', width=2)
),
secondary_y=True,
)
# Update layout
fig.update_layout(
title="Hourly Contributions and Cumulative Donations",
font=dict(family="monospace", size=12),
hovermode="x unified",
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
xaxis=dict(
rangeslider=dict(visible=True),
type="date",
gridcolor='#ffffff'
),
yaxis=dict(gridcolor='#ffffff'),
yaxis2=dict(gridcolor='#ffffff'),
height=550
)
# Set axis titles and range
fig.update_xaxes(title_text="Time", range=[starting_time, min(ending_time, hourly_totals['hour'].max())])
fig.update_yaxes(title_text="Hourly Donations (USD)", secondary_y=False)
fig.update_yaxes(title_text="Cumulative Donations (USD)", secondary_y=True, tickprefix="$", tickformat=",.0f")
return fig
@st.cache_data(ttl=3600)
def generate_round_summary(hourly_contributions, dfp, dfr):
# Initialize round summary with basic metrics
round_summary = dfr[['round_name', 'amountUSD', 'uniqueContributors', 'match_amount_in_usd', 'chain_id', 'round_id']]
round_summary = round_summary.rename(columns={
'amountUSD': 'total_donated',
'uniqueContributors': 'unique_donors',
'match_amount_in_usd': 'matching_pool'
})
# Get project count per round
project_count = dfp.groupby('round_name')['projectId'].nunique().reset_index()
project_count.columns = ['round_name', 'project_count']
# Round matching pool to nearest thousand
round_summary['matching_pool'] = round_summary['matching_pool'].round(-3)
# Merge project count with round summary
round_summary = pd.merge(round_summary, project_count, on='round_name')
# Calculate matching ratio
round_summary['crowdfunding_to_matching_ratio'] = round_summary.apply(
lambda row: f"{row['matching_pool']/(row['total_donated'] if row['total_donated'] != 0 else row['matching_pool']):.1f}x",
axis=1
)
# Process hourly contributions
hourly_data = hourly_contributions.groupby(['chain_id', 'round_id', 'hour'])['total_amount'].sum().reset_index()
# Create time series for each round
hourly_series = {}
for chain_id, round_id in zip(hourly_data['chain_id'], hourly_data['round_id']):
mask = (hourly_data['chain_id'] == chain_id) & (hourly_data['round_id'] == round_id)
hourly_series[(chain_id, round_id)] = hourly_data[mask]['total_amount'].tolist()
# Add hourly series to round summary
round_summary['hourly_contributions'] = round_summary.apply(
lambda row: hourly_series.get((row['chain_id'], row['round_id']), []),
axis=1
)
# Create round URLs
round_summary['round_url'] = round_summary.apply(
lambda row: f"https://explorer.gitcoin.co/#/round/{row['chain_id']}/{row['round_id']}",
axis=1
)
# Sort by total donated
round_summary = round_summary.sort_values('total_donated', ascending=False)
# Select and order final columns
round_summary = round_summary[[
'round_name',
'crowdfunding_to_matching_ratio',
'round_url',
'hourly_contributions',
'project_count',
'matching_pool',
'unique_donors',
'total_donated',
]]
return round_summary
@st.cache_resource(ttl=3600)
def create_treemap(votes_by_voter_and_project):
votes_by_voter_and_project['voter_id'] = votes_by_voter_and_project['voter_id'].str[:10] + '...'
votes_by_voter_and_project['shortened_title'] = votes_by_voter_and_project['project_name'].apply(lambda x: x if len(x) <= 15 else x[:15] + '...')
fig = px.treemap(votes_by_voter_and_project, path=['shortened_title', 'voter_id'], values='amountUSD', hover_data=['project_name', 'amountUSD'])
# Update hovertemplate to format the hover information
fig.update_traces(
texttemplate='%{label}<br>$%{value:.3s}',
hovertemplate='<b>%{customdata[0]}</b><br>Amount: $%{customdata[1]:,.2f}',
textposition='middle center',
textfont_size=20
)
fig.update_traces(texttemplate='%{label}<br>$%{value:.3s}', textposition='middle center', textfont_size=20)
fig.update_layout(font=dict(size=20))
fig.update_layout(height=550)
fig.update_layout(title_text="Donations by Grant")
return fig
def create_project_spotlight(dfv, dfp):
st.header("Project Spotlight")
# Prepare data
project_metrics = dfv.groupby(['projectId', pd.Grouper(key='block_timestamp', freq='H')]).agg({
'amountUSD': 'sum',
'voter': 'nunique',
'id': 'count'
}).reset_index()
project_metrics = project_metrics.merge(dfp[['projectId', 'title']], on='projectId', how='left')
# Get top 10 projects by total raised
top_projects = project_metrics.groupby('projectId').agg({
'amountUSD': 'sum',
'voter': 'nunique',
'id': 'count',
'title': 'first'
}).nlargest(10, 'amountUSD')
# Create interactive project selector
selected_project = st.selectbox("Select a project to spotlight",
options=top_projects.index,
format_func=lambda x: top_projects.loc[x, 'title'])
project_data = project_metrics[project_metrics['projectId'] == selected_project]
# Create subplot figure
fig = make_subplots(rows=2, cols=2,
subplot_titles=("Cumulative Donations", "Hourly Donations",
"Unique Donors", "Donations vs Donors"),
specs=[[{"secondary_y": True}, {"secondary_y": True}],
[{"secondary_y": True}, {"type": "scatter"}]])
# Cumulative Donations
cumulative = project_data['amountUSD'].cumsum()
fig.add_trace(go.Scatter(x=project_data['block_timestamp'], y=cumulative,
name="Cumulative Donations"), row=1, col=1)
# Hourly Donations
fig.add_trace(go.Bar(x=project_data['block_timestamp'], y=project_data['amountUSD'],
name="Hourly Donations"), row=1, col=2)
# Unique Donors
cumulative_donors = project_data['voter'].cumsum()
fig.add_trace(go.Scatter(x=project_data['block_timestamp'], y=cumulative_donors,
name="Cumulative Donors"), row=2, col=1)
# Donations vs Donors scatter
fig.add_trace(go.Scatter(x=project_data['voter'], y=project_data['amountUSD'],
mode='markers', name="Donations vs Donors"), row=2, col=2)
# Update layout
fig.update_layout(height=800, title_text=f"Spotlight: {top_projects.loc[selected_project, 'title']}")
fig.update_xaxes(title_text="Time", row=1, col=1)
fig.update_xaxes(title_text="Time", row=1, col=2)
fig.update_xaxes(title_text="Time", row=2, col=1)
fig.update_xaxes(title_text="Unique Donors", row=2, col=2)
fig.update_yaxes(title_text="USD", row=1, col=1)
fig.update_yaxes(title_text="USD", row=1, col=2)
fig.update_yaxes(title_text="Donors", row=2, col=1)
fig.update_yaxes(title_text="Donation Amount (USD)", row=2, col=2)
st.plotly_chart(fig, use_container_width=True)
# Project Stats
col1, col2, col3 = st.columns(3)
col1.metric("Total Raised", f"${top_projects.loc[selected_project, 'amountUSD']:,.2f}")
col2.metric("Unique Donors", f"{top_projects.loc[selected_project, 'voter']:,}")
col3.metric("Total Contributions", f"{top_projects.loc[selected_project, 'id']:,}")
# Recent Activity
st.subheader("Recent Activity")
recent = project_data.nlargest(10, 'block_timestamp')[['block_timestamp', 'amountUSD', 'voter']]
recent['block_timestamp'] = recent['block_timestamp'].dt.strftime('%Y-%m-%d %H:%M:%S')
st.table(recent)
#col3.metric('Total Transactions', '{:,.0f}'.format(dfv['transaction_hash'].nunique()))
st.image('assets/657c7ed16b14af693c08b92d_GTC-Logotype-Dark.png', width = 200)
st.write('')
st.write('This page highlights some of the key metrics and insights from the recent Gitcoin Grants Programs. Select a program below to get started!')
dfr = utils.get_round_data()
program_option = st.selectbox( 'Select Program', dfr['program'].unique())
st.header(program_option + ' Summary')
if "program_option" in st.session_state and st.session_state.program_option != program_option:
st.session_state.data_loaded = False
st.session_state.program_option = program_option
if "data_loaded" in st.session_state and st.session_state.data_loaded:
dfp = st.session_state.dfp
dfr = st.session_state.dfr
unique_donors = st.session_state.unique_donors
hourly_contributions = st.session_state.hourly_contributions
else:
data_load_state = st.text('Loading data...')
dfp, dfr, unique_donors, hourly_contributions = utils.load_round_data(program_option, dfr)
# WE HERE RIGHT NOW
data_load_state.text("")
median_end_time = pd.to_datetime(dfr['donations_end_time'].median(), utc=True)
time_left = utils.get_time_left(median_end_time)
st.write('')
if time_left != '0 days 0 hours 0 minutes':
st.write('⏰ Time Left: ' + time_left)
#else:
#st.subheader('🎉 Round Complete 🎉')
col1, col2, col3 = st.columns(3)
col1.metric('Matching Pool', '${:,.0f}'.format(dfr['match_amount_in_usd'].apply(lambda x: round(x, -3)).sum()))
col1.metric('Total Donated', '${:,.0f}'.format(dfr['amountUSD'].sum()))
col2.metric("Total Donations", '{:,.0f}'.format(dfr['votes'].sum()))
col2.metric('Unique Donors', '{:,.0f}'.format(unique_donors['count'].iloc[0]))
col3.metric('Total Rounds', '{:,.0f}'.format(dfr.shape[0]))
col3.metric('Total Projects', '{:,.0f}'.format(len(dfp)))
starting_time = pd.to_datetime(dfr['donations_start_time'].min(), utc=True)
ending_time = pd.to_datetime(dfr['donations_end_time'].max(), utc=True)
color_map = dict(zip(dfp['round_name'].unique(), px.colors.qualitative.Pastel))
if dfr['amountUSD'].sum() < 1000:
st.warning("🚀 You're early! We don't have data for this program yet. Try selecting a different program or check back soon for exciting updates!")
else:
col1, col2 = st.columns([2, 1])
with col1:
st.plotly_chart(get_combined_donation_chart(hourly_contributions, starting_time, ending_time, color_map), use_container_width=True)
with col2:
st.plotly_chart(create_token_distribution_chart(hourly_contributions), use_container_width=True)
st.header("Project Highlights")
create_project_highlights(dfp)
# Display round summary table with column configs
round_summary = generate_round_summary(hourly_contributions, dfp, dfr)
st.header("Rounds Summary")
st.dataframe(
round_summary,
column_config={
"round_name": st.column_config.TextColumn("Round Name"),
"crowdfunding_to_matching_ratio": st.column_config.TextColumn("Match Multiple (Avg.)", width="small"),
"round_url": st.column_config.LinkColumn("Round URL", display_text="Visit"),
"hourly_contributions": st.column_config.LineChartColumn("Hourly Contributions"),
"project_count": st.column_config.NumberColumn("Project Count", format="%d"),
"matching_pool": st.column_config.NumberColumn("Matching Pool (USD)", format="$%.0f"),
"unique_donors": st.column_config.NumberColumn("Unique Donors", format="%d"),
"total_donated": st.column_config.NumberColumn("Total Donated", format="$%.2f")
},
hide_index=True,
height=38 + (len(round_summary) * 35) # header_height + (num_rows * row_height) + padding
)
st.header("Round Details")
if dfp['round_id'].nunique() > 1:
# selectbox to select the round
option = st.selectbox(
'Select Round',
dfr['options'].unique())
option = option.split(' | ')[0]
dfp = dfp[dfp['round_name'] == option]
dfr = dfr[dfr['round_name'] == option]
dfp['Project Link'] = 'https://explorer.gitcoin.co/#/round/' + dfp['chain_id'].astype(str) + '/' + dfp['round_id'].astype(str) + '/' + dfp['projectId'].astype(str)
df_display = dfp[['title', 'unique_donors_count', 'amountUSD', 'Project Link']].sort_values('unique_donors_count', ascending=False)
st.dataframe(
df_display,
column_config={
"title": st.column_config.TextColumn("Title"),
"unique_donors_count": st.column_config.NumberColumn("Donors", format="%d"),
"amountUSD": st.column_config.NumberColumn("Amount (USD)", format="$%.2f"),
"Project Link": st.column_config.LinkColumn("Project", display_text="View")
},
hide_index=True,
use_container_width=True,
height=800
)
#create_project_spotlight(dfv, dfp)