Skip to content
Glenn Lopez edited this page Jan 29, 2017 · 20 revisions

UART initialisation

  1. Activate clock gate controls for your desired UART and GPIO ports:
    • UART clock gate control is under the RCGC1 register
    • GPIO clock gate control is under the RCGC2 register
  2. Configure the UART registers:
    • Disable the UART module using UARTEN under the UARTCTL
    • Calculate/Set the Baud Rate's Integer and Fractional value:
      • UARTIBRD = (Clock speed / (16 * Desired Baud rate))
        • `ie: (50,000,000 / (16 * 115,200)) = (27.1267) = 27`
      • UARTFBRD = (UARTIBRD's -nth remainder * 64 + 0.5)
        • `ie: (0.1267 * 64 + 0.5) = 8 `
    • Set the number of bits to be transmited using WLEN under the UARTLCRH register
    • Enable FIFO using FEN under the UARTLCRH register
    • Re-enable the UART module using UARTEN under the UARTCTL register
  3. Configure the GPIO registers:
    • Enable Alternative Function for UART's TX and RX under the GPIOAFSEL register
    • Enable Digital Pins for UART's TX and RX under the GPIODEN register
    • Configure which bits in the GPIOPCTL register need be the alternative function
      • `ie: GPIO_PORTA_PCTL_R = (GPIO_PORTA_PCTL_R&0xFFFFFF00)+0x00000011; `
    • Disable analog functionality on TX and RX bits under the GPIOAMSEL register
void UART_Init(void){
  // Step 1:
  SYSCTL_RCGC1_R |= 0x00000001; // activate UART0
  SYSCTL_RCGC2_R |= 0x00000001; // activate port A
  
  // Step 2:
  UART0_CTL_R &= ~0x00000001; // disable UART
  UART0_IBRD_R = 27;  // IBRD = int(50,000,000 / (16 * 115,200)) = int(27.1267)
  UART0_FBRD_R = 8;   // FBRD = int(0.1267 * 64 + 0.5) = 8                     
  UART0_LCRH_R = (0x00000060|0x00000010); // 8 bit word length 
  UART0_CTL_R |= 0x00000001; // enable UART
  
  // Step 3:
  GPIO_PORTA_AFSEL_R |= 0x03;  // enable alt funct on PA1-0
  GPIO_PORTA_DEN_R |= 0x03;  // enable digital I/O on PA1-0                                  
  GPIO_PORTA_PCTL_R = (GPIO_PORTA_PCTL_R&0xFFFFFF00)+0x00000011;  // configure PA1-0 as UART
  GPIO_PORTA_AMSEL_R &= ~0x03;  // disable analog functionality on PA
}

UART device driver routine (input)

  1. Check RXFE (Recievier FIFO Empty) flag under the UARTFR register: * Keep checking RXFE until the flag is 0 (1 = Empty | 0 = Not empty)
  2. Once RXFE flag is 0 (RXFE is not empty): * Read the data from UARTDR register (read only the first 8 bits: UARTDR&0xFF) * Return the data
unsigned char UART_InChar(void){
    while((UART0_FR_R&0x00000010) != 0); // Step 1
    return((unsigned char)(UART0_DR_R&0xFF)); // Step 2
}

UART device driver routine (output)

  1. Check TXFF (Transmit FIFO Full) flag under the UARTFR register: * Keep checking TXFF until the flag is 0 (1 = Full | 0 = Not full)
  2. Once TXFF flag is 0 (TXFF is not full): * Write the data into the UARTDR's data register
void UART_OutChar(unsigned char data){
    while((UART0_FR_R&UART_FR_TXFF) != 0); // Step 1
    UART0_DR_R = data; // Step 2
}
https://d37djvu3ytnwxt.cloudfront.net/assets/courseware/v1/d76b68c20edca14b980a6b5ca72eac0c/asset-v1:UTAustinX+UT.6.03x+1T2016+type@asset+block/Fig04_34_UARTFlowcharts.jpg

TM4C123G (datasheet)

TM4C123G is a 32bit MCU based on the ARM® Cortex®-M4F architecture. Make sure to read C++ Support on TI Compilers if you plan on using C++

Clone this wiki locally