-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrender_video.py
87 lines (72 loc) · 3.69 KB
/
render_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import numpy as np
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer.bg_fg_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from models import gaussianModelRender
import copy
def modify_mesh(triangles: torch.Tensor, # num_gaussians x 3 x 3, triangles[:,:,1] = 0
time: float
):
return triangles
def render_set_combine(model_path, views, gaussians_fg, gaussians_fg_mesh, gaussians_bg, pipeline, background, extension):
render_path = os.path.join(model_path, "render")
obj_path = os.path.join(model_path, "pseudomesh")
pipeline.obj_path = obj_path
makedirs(render_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
if os.path.exists(os.path.join(obj_path, f"{view.time}.obj")):
rendering = render(view, gaussians_fg_mesh, gaussians_bg, pipeline, background, modify_mesh=modify_mesh)["render"].cpu()
else:
rendering = render(view, gaussians_fg, gaussians_bg, pipeline, background)["render"].cpu()
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + extension))
def render_sets(dataset: ModelParams, iteration: int, pipeline: PipelineParams, extension: str):
with torch.no_grad():
parser = copy.deepcopy(dataset)
gaussians_fg = gaussianModelRender['gs'](dataset.sh_degree)
gaussians_fg_mesh = gaussianModelRender['pgs'](dataset.sh_degree)
scene_fg = Scene(dataset, gaussians_fg, load_iteration=iteration, shuffle=False)
if parser.bg_model != "":
dataset.model_path = dataset.bg_model
gaussians_bg = gaussianModelRender['gs'](dataset.sh_degree)
scene_bg = Scene(dataset, gaussians_bg, load_iteration=iteration, shuffle=False)
else:
gaussians_bg = None
scene_bg = None
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
render_set_combine(dataset.model_path, scene_fg.getTestCameras(), gaussians_fg, gaussians_fg_mesh, gaussians_bg, pipeline, background, extension)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument('--camera', type=str, default="mirror")
parser.add_argument("--distance", type=float, default=1.0)
parser.add_argument("--num_pts", type=int, default=100_000)
parser.add_argument('--gs_type', type=str, default="gs")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--start_frame", type=int, default=5)
parser.add_argument("--bg_model", type=str, default="")
parser.add_argument("--scale", type=float, default=1)
parser.add_argument("--bg_stop_frame", type=int, default=-1)
parser.add_argument("--extension", type=str, default=".png")
args = get_combined_args(parser)
model.gs_type = args.gs_type
model.camera = args.camera
model.distance = args.distance
model.num_pts = args.num_pts
model.bg_model = args.bg_model
pipeline.start_frame = args.start_frame
pipeline.scale = args.scale
pipeline.bg_stop_frame = args.bg_stop_frame
# Initialize system state (RNG)
safe_state(args.quiet)
render_sets(model.extract(args), args.iteration, pipeline.extract(args), args.extension)