-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathhypernet_kernel.py
503 lines (406 loc) · 22.1 KB
/
hypernet_kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
from collections import defaultdict
from copy import deepcopy
from re import S
from typing import Optional, Tuple
import torch
from torch import nn
import numpy as np
from backbone import BayesLinear
from utils import kl_diag_gauss_with_standard_gauss
from methods.hypernets import HyperNetPOC
from methods.hypernets.utils import set_from_param_dict, accuracy_from_scores
from methods.kernel_convolutions import KernelConv
from methods.kernels import init_kernel_function
from methods.transformer import TransformerEncoder
class HyperShot(HyperNetPOC):
def __init__(
self, model_func: nn.Module, n_way: int, n_support: int, n_query: int,
params: "ArgparseHNParams", target_net_architecture: Optional[nn.Module] = None
):
super().__init__(
model_func, n_way, n_support, n_query, params=params, target_net_architecture=target_net_architecture
)
#################################################
########### BAYESIAN PARAMS #####################
#################################################
self.loss_kld = kl_diag_gauss_with_standard_gauss
self.S: int = params.hn_S # sampling
self.use_kld = params.hn_use_kld
self.hn_use_mu_in_kld = params.hn_use_mu_in_kld
# self.epoch_state_dict = {}
################################################
################################################
################################################
# TODO - check!!!
# Use support embeddings - concatenate them with kernel features
self.hn_use_support_embeddings: bool = params.hn_use_support_embeddings
# Remove self relations by matrix K multiplication
self.hn_no_self_relations: bool = params.hn_no_self_relations
self.kernel_function = init_kernel_function(
kernel_input_dim=self.feat_dim + self.n_way if self.attention_embedding else self.feat_dim,
params=params
)
# embedding size
# TODO - add attention based input also
self.embedding_size = self.init_embedding_size(params)
# I will be adding the kernel vector to the stacked images embeddings
# TODO: add/check changes for attention-like input
self.hn_kernel_invariance: bool = params.hn_kernel_invariance
if self.hn_kernel_invariance:
self.hn_kernel_invariance_type: str = params.hn_kernel_invariance_type
self.hn_kernel_invariance_pooling: str = params.hn_kernel_invariance_pooling
if self.hn_kernel_invariance_type == 'attention':
self.init_kernel_transformer_architecture(params)
else:
self.init_kernel_convolution_architecture(params)
self.query_relations_size = self.n_way * self.n_support_size_context
self.target_net_architecture = target_net_architecture or self.build_target_net_architecture(params)
self.init_hypernet_modules()
def init_embedding_size(self, params) -> int:
if params.hn_use_support_embeddings:
support_embeddings_size = self.feat_dim * self.n_way * self.n_support_size_context
else:
support_embeddings_size = 0
if params.hn_kernel_invariance:
if params.hn_kernel_invariance_type == 'attention':
return support_embeddings_size + (self.n_way * self.n_support_size_context)
else:
return support_embeddings_size + params.hn_kernel_convolution_output_dim
else:
if params.hn_no_self_relations:
return support_embeddings_size + (
((self.n_way * self.n_support_size_context) ** 2) - (
self.n_way * self.n_support_size_context))
else:
return support_embeddings_size + ((self.n_way * self.n_support_size_context) ** 2)
@property
def n_support_size_context(self) -> int:
return 1 if self.sup_aggregation in ["mean", "min_pooling", "max_pooling"] else self.n_support
def build_target_net_architecture(self, params) -> nn.Module:
tn_hidden_size = params.hn_tn_hidden_size
layers = []
if params.hn_use_support_embeddings:
common_insize = ((self.n_way * self.n_support_size_context) + self.feat_dim)
else:
common_insize = (self.n_way * self.n_support_size_context)
for i in range(params.hn_tn_depth):
is_final = i == (params.hn_tn_depth - 1)
insize = common_insize if i == 0 else tn_hidden_size
outsize = self.n_way if is_final else tn_hidden_size
layers.append(BayesLinear(insize, outsize, bias=True, bayesian=params.hn_bayesian_model, bayesian_test=params.hn_bayesian_test,
# epoch_state_dict=self.epoch_state_dict
))
if not is_final:
layers.append(nn.ReLU())
res = nn.Sequential(*layers)
return res
def maybe_aggregate_support_feature(self, support_feature: torch.Tensor) -> torch.Tensor:
"""
Process embeddings for few shot learning
"""
if self.n_support > 1:
if self.sup_aggregation == 'mean':
return torch.mean(support_feature, axis=1).reshape(self.n_way, 1, -1)
elif self.sup_aggregation == 'max_pooling':
pooled, _ = torch.max(support_feature, axis=1)
pooled = pooled.reshape(self.n_way, 1, -1)
return pooled
elif self.sup_aggregation == 'min_pooling':
pooled, _ = torch.min(support_feature, axis=1)
pooled = pooled.reshape(self.n_way, 1, -1)
return pooled
return support_feature
def parse_feature(self, x, is_feature) -> Tuple[torch.Tensor, torch.Tensor]:
support_feature, query_feature = super().parse_feature(x, is_feature)
support_feature = self.maybe_aggregate_support_feature(support_feature)
return support_feature, query_feature
def init_kernel_convolution_architecture(self, params):
# TODO - add convolution-based approach
self.kernel_2D_convolution: bool = True
self.kernel_conv: nn.Module = KernelConv(self.n_support, params.hn_kernel_convolution_output_dim)
def init_kernel_transformer_architecture(self, params):
kernel_transformer_input_dim: int = self.n_way * self.n_support_size_context
self.kernel_transformer_encoder: nn.Module = TransformerEncoder(
num_layers=params.kernel_transformer_layers_no,
input_dim=kernel_transformer_input_dim,
num_heads=params.kernel_transformer_heads_no,
dim_feedforward=params.kernel_transformer_feedforward_dim
)
def build_relations_features(self, support_feature: torch.Tensor,
feature_to_classify: torch.Tensor) -> torch.Tensor:
supp_way, n_support, supp_feat = support_feature.shape
n_examples, feat_dim = feature_to_classify.shape
support_features = support_feature.reshape(supp_way * n_support, supp_feat)
kernel_values_tensor = self.kernel_function.forward(support_features, feature_to_classify)
relations = kernel_values_tensor.T
return relations
def build_kernel_features_embedding(self, support_feature: torch.Tensor) -> torch.Tensor:
"""
x_support: [n_way, n_support, hidden_size]
"""
supp_way, n_support, supp_feat = support_feature.shape
support_features = support_feature.reshape(supp_way * n_support, supp_feat)
support_features_copy = torch.clone(support_features)
kernel_values_tensor = self.kernel_function.forward(support_features, support_features_copy)
# Remove self relations by matrix multiplication
if self.hn_no_self_relations:
zero_diagonal_matrix = torch.ones_like(kernel_values_tensor).cuda() - torch.eye(
kernel_values_tensor.shape[0]).cuda()
kernel_values_tensor = kernel_values_tensor * zero_diagonal_matrix
return torch.flatten(kernel_values_tensor[kernel_values_tensor != 0.0])
if self.hn_kernel_invariance:
# TODO - check!!!
if self.hn_kernel_invariance_type == 'attention':
kernel_values_tensor = torch.unsqueeze(kernel_values_tensor.T, 0)
encoded = self.kernel_transformer_encoder.forward(kernel_values_tensor)
if self.hn_kernel_invariance_pooling == 'min':
invariant_kernel_values, _ = torch.min(encoded, 1)
elif self.hn_kernel_invariance_pooling == 'max':
invariant_kernel_values, _ = torch.max(encoded, 1)
else:
invariant_kernel_values = torch.mean(encoded, 1)
return invariant_kernel_values
else:
# TODO - add convolutional approach
kernel_values_tensor = torch.unsqueeze(torch.unsqueeze(kernel_values_tensor.T, 0), 0)
invariant_kernel_values = torch.flatten(self.kernel_conv.forward(kernel_values_tensor))
return invariant_kernel_values
return kernel_values_tensor
def generate_target_net(self, support_feature: torch.Tensor) -> nn.Module:
"""
x_support: [n_way, n_support, hidden_size]
"""
embedding = self.build_kernel_features_embedding(support_feature)
embedding = embedding.reshape(1, self.embedding_size)
# TODO - check!!!
if self.hn_use_support_embeddings:
embedding = torch.cat((embedding, torch.flatten(support_feature)), 0)
root = self.hypernet_neck(embedding)
network_params = {
name.replace("-", "."): param_net(root).reshape(self.target_net_param_shapes[name])
for name, param_net in self.hypernet_heads.items()
}
tn = deepcopy(self.target_net_architecture)
set_from_param_dict(tn, network_params)
tn.support_feature = support_feature
return tn.cuda(), network_params
def set_forward(self, x: torch.Tensor, is_feature: bool = False, permutation_sanity_check: bool = False):
support_feature, query_feature = self.parse_feature(x, is_feature)
classifier, _ = self.generate_target_net(support_feature)
bayesian_params_dict = self.upload_mu_and_sigma_histogram(classifier, test=True)
final_y_pred = []
for sample in range(self.hn_S_test):
query_feature = query_feature.reshape(
-1, query_feature.shape[-1]
)
relational_query_feature = self.build_relations_features(support_feature, query_feature)
# TODO - check!!!
if self.hn_use_support_embeddings:
relational_query_feature = torch.cat((relational_query_feature, query_feature), 1)
y_pred = classifier(relational_query_feature)
final_y_pred.append(y_pred)
if permutation_sanity_check:
### random permutation test
perm = torch.randperm(len(query_feature))
rev_perm = torch.argsort(perm)
query_perm = query_feature[perm]
relation_perm = self.build_relations_features(support_feature, query_perm)
assert torch.equal(relation_perm[rev_perm], relational_query_feature)
y_pred_perm = classifier(relation_perm)
assert torch.equal(y_pred_perm[rev_perm], y_pred)
return torch.stack(final_y_pred).mean(dim=0), bayesian_params_dict
def set_forward_with_adaptation(self, x: torch.Tensor):
y_pred, bayesian_params_dict, metrics = super().set_forward_with_adaptation(x)
support_feature, query_feature = self.parse_feature(x, is_feature=False)
query_feature = query_feature.reshape(
-1, query_feature.shape[-1]
)
relational_query_feature = self.build_relations_features(support_feature, query_feature)
metrics["accuracy/val_relational"] = accuracy_from_scores(relational_query_feature, self.n_way, self.n_query)
return y_pred, bayesian_params_dict, metrics
def set_forward_loss(
self, x: torch.Tensor, detach_ft_hn: bool = False, detach_ft_tn: bool = False,
train_on_support: bool = True,
train_on_query: bool = True,
epoch: int = -1,
):
nw, ne, c, h, w = x.shape
# self.epoch_state_dict["cur_epoch"] = epoch
support_feature, query_feature = self.parse_feature(x, is_feature=False)
# TODO: add/check changes for attention-like input
if self.attention_embedding:
y_support = self.get_labels(support_feature)
y_query = self.get_labels(query_feature)
y_support_one_hot = torch.nn.functional.one_hot(y_support)
support_feature_with_classes_one_hot = torch.cat((support_feature, y_support_one_hot), 2)
y_query_zeros = torch.zeros((y_query.shape[0], y_query.shape[1], y_support_one_hot.shape[2]))
query_feature_with_zeros = torch.cat((query_feature, y_query_zeros), 2)
feature_to_hn = support_feature_with_classes_one_hot.detach() if detach_ft_hn else support_feature_with_classes_one_hot
query_feature_to_hn = query_feature_with_zeros
else:
feature_to_hn = support_feature.detach() if detach_ft_hn else support_feature
query_feature_to_hn = query_feature
classifier, hn_out = self.generate_target_net(feature_to_hn)
self.last_classifier = classifier
feature_to_classify = []
y_to_classify_gt = []
if train_on_support:
feature_to_classify.append(
support_feature.reshape(
(self.n_way * self.n_support_size_context), support_feature.shape[-1]
)
)
y_support = self.get_labels(support_feature)
y_to_classify_gt.append(y_support.reshape(self.n_way * self.n_support_size_context))
if train_on_query:
feature_to_classify.append(
query_feature.reshape(
(self.n_way * (ne - self.n_support)), query_feature.shape[-1]
)
)
y_query = self.get_labels(query_feature)
y_to_classify_gt.append(y_query.reshape(self.n_way * (ne - self.n_support)))
feature_to_classify = torch.cat(feature_to_classify)
y_to_classify_gt = torch.cat(y_to_classify_gt)
relational_feature_to_classify = self.build_relations_features(support_feature, feature_to_classify)
if detach_ft_tn:
relational_feature_to_classify = relational_feature_to_classify.detach()
if self.hn_use_support_embeddings:
relational_feature_to_classify = torch.cat((relational_feature_to_classify, feature_to_classify), 1)
total_crossentropy_loss = 0
total_kld_loss = 0
for _ in range(self.S):
y_pred = classifier(relational_feature_to_classify)
crossentropy_loss = 0
kld_loss = 0
for m in classifier.modules() :
if isinstance(m, (BayesLinear)):
if self.use_kld:
if self.hn_use_mu_in_kld:
kld_loss += self.loss_kld(m.weight_mu, m.weight_log_var) + self.loss_kld(m.bias_mu, m.bias_log_var)
else:
# substitute mu weight and bias with zero tensors to prevent flow of gradient through those tensors
zero_weight = torch.zeros(m.weight_mu.size()).cuda()
zero_bias = torch.zeros(m.bias_mu.size()).cuda()
kld_loss += self.loss_kld(zero_weight, m.weight_log_var) + self.loss_kld(zero_bias, m.bias_log_var)
crossentropy_loss += self.loss_fn(y_pred, y_to_classify_gt)
total_crossentropy_loss += crossentropy_loss
total_kld_loss += kld_loss
# divide by number of sampled predictions
total_crossentropy_loss /= S
total_kld_loss /= S
if self.use_kld:
return total_crossentropy_loss, total_kld_loss, self.upload_mu_and_sigma_histogram(classifier, False)
else:
return total_crossentropy_loss, 0, self.upload_mu_and_sigma_histogram(classifier, False)
# helper function that generates dictionary of parameters
# used to print histograms and violin plots in neptune
def upload_mu_and_sigma_histogram(self, classifier : nn.Module, test = False):
mu_weight = []
mu_bias = []
sigma_weight = []
sigma_bias = []
for module in classifier.modules():
if isinstance(module, (BayesLinear)):
mu_weight.append(module.weight_mu.clone().data.cpu().numpy().flatten())
mu_bias.append(module.bias_mu.clone().data.cpu().numpy().flatten())
sigma_weight.append(torch.exp(0.5 * (module.weight_log_var-4)).clone().data.cpu().numpy().flatten())
sigma_bias.append(torch.exp(0.5 * (module.bias_log_var-4)).clone().data.cpu().numpy().flatten())
mu_weight = np.concatenate(mu_weight)
mu_bias = np.concatenate(mu_bias)
sigma_weight = np.concatenate(sigma_weight)
sigma_bias = np.concatenate(sigma_bias)
if not test:
return {
"mu_weight": mu_weight,
"mu_bias": mu_bias,
"sigma_weight": sigma_weight,
"sigma_bias": sigma_bias
}
else:
return {
"mu_weight_test": mu_weight,
"mu_bias_test": mu_bias,
"sigma_weight_test": sigma_weight,
"sigma_bias_test": sigma_bias
}
# helper function to create dictionary of bayesian parameters in target network (used in experiments)
def get_mu_and_sigma(self):
param_dict = {}
i = 0
for module in self.last_classifier.modules():
if isinstance(module, (BayesLinear)):
weight_mu = module.weight_mu.clone().data.cpu().numpy().flatten()
bias_mu = module.bias_mu.clone().data.cpu().numpy().flatten()
weight_sigma = torch.exp(0.5 * (module.weight_log_var-4)).clone().data.cpu().numpy().flatten()
bias_sigma = torch.exp(0.5 * (module.bias_log_var-4)).clone().data.cpu().numpy().flatten()
param_dict[f"Layer {i+1} / weight_mu"] = weight_mu
param_dict[f"Layer {i+1} / bias_mu"] = bias_mu
param_dict[f"Layer {i+1} / weight_sigma"] = weight_sigma
param_dict[f"Layer {i+1} / bias_sigma"] = bias_sigma
i = i + 1
return param_dict
def test_loop(self, test_loader, record=None, return_std: bool = False):
correct = 0
count = 0
acc_all = []
acc_at = defaultdict(list)
bnn_params_dict = {
"mu_weight_test": [],
"mu_bias_test": [],
"sigma_weight_test": [],
"sigma_bias_test": []
}
iter_num = len(test_loader)
for i, (x, _) in enumerate(test_loader):
self.n_query = x.size(1) - self.n_support
if self.change_way:
self.n_way = x.size(0)
y_query = np.repeat(range(self.n_way), self.n_query)
try:
scores, bayesian_params_dict, acc_at_metrics = self.set_forward_with_adaptation(x)
# append from current eval
bnn_params_dict["mu_weight_test"].append(bayesian_params_dict["mu_weight_test"])
bnn_params_dict["mu_bias_test"].append(bayesian_params_dict["mu_bias_test"])
bnn_params_dict["sigma_weight_test"].append(bayesian_params_dict["sigma_weight_test"])
bnn_params_dict["sigma_bias_test"].append(bayesian_params_dict["sigma_bias_test"])
for (k, v) in acc_at_metrics.items():
acc_at[k].append(v)
except Exception as e:
scores, bayesian_params_dict = self.set_forward(x)
# append from current eval
bnn_params_dict["mu_weight_test"].append(bayesian_params_dict["mu_weight_test"])
bnn_params_dict["mu_bias_test"].append(bayesian_params_dict["mu_bias_test"])
bnn_params_dict["sigma_weight_test"].append(bayesian_params_dict["sigma_weight_test"])
bnn_params_dict["sigma_bias_test"].append(bayesian_params_dict["sigma_bias_test"])
scores = scores.reshape((self.n_way * self.n_query, self.n_way))
topk_scores, topk_labels = scores.data.topk(1, 1, True, True)
topk_ind = topk_labels.cpu().numpy()
top1_correct = np.sum(topk_ind[:, 0] == y_query)
correct_this = float(top1_correct)
count_this = len(y_query)
acc_all.append(correct_this / count_this * 100)
metrics = {
k: np.mean(v) if len(v) > 0 else 0
for (k, v) in acc_at.items()
}
acc_all = np.asarray(acc_all)
acc_mean = np.mean(acc_all)
acc_std = np.std(acc_all)
print(metrics)
print('%d Test Acc = %4.2f%% +- %4.2f%%' % (iter_num, acc_mean, 1.96 * acc_std / np.sqrt(iter_num)))
# convert list of numpy arrays to numpy arrays
bnn_params_dict = {
f"mu_weight_test_mean": np.concatenate(bnn_params_dict["mu_weight_test"]).mean(axis=0),
f"mu_bias_test_mean": np.concatenate(bnn_params_dict["mu_bias_test"]).mean(axis=0),
f"sigma_weight_test_mean": np.concatenate(bnn_params_dict["sigma_weight_test"]).mean(axis=0),
f"sigma_bias_test_mean": np.concatenate(bnn_params_dict["sigma_bias_test"]).mean(axis=0),
f"mu_weight_test_std": np.concatenate(bnn_params_dict["mu_weight_test"]).std(axis=0),
f"mu_bias_test_std": np.concatenate(bnn_params_dict["mu_bias_test"]).std(axis=0),
f"sigma_weight_test_std": np.concatenate(bnn_params_dict["sigma_weight_test"]).std(axis=0),
f"sigma_bias_test_std": np.concatenate(bnn_params_dict["sigma_bias_test"]).std(axis=0)
}
if return_std:
return acc_mean, acc_std, metrics, bnn_params_dict
else:
return acc_mean, metrics, bnn_params_dict