-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdset_visualize.py
531 lines (484 loc) · 20.4 KB
/
dset_visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
#!/usr/bin/env python
"""
Usage:
python dset_visualize.py -f [file name] -n [optional: # of evts, def==10]
"""
import sys
from collections import OrderedDict
import pylab
from matplotlib.backends.backend_pdf import PdfPages
import tensorflow as tf
import numpy as np
from mnvtf.utils import get_reader_class
from mnvtf.utils import make_data_reader_dict
from mnvtf.data_constants import HITIMESU, HITIMESV, HITIMESX
from mnvtf.data_constants import PIDU, PIDV, PIDX
from mnvtf.data_constants import EVENT_DATA, EVENTIDS
from mnvtf.data_constants import PLANECODES, SEGMENTS, ZS
from mnvtf.data_constants import N_HADMULTMEAS
from mnvtf.data_constants import SEGMENTATION_TYPE
from mnvtf.hdf5_readers import MnvHDF5Reader as HDF5Reader
from mnvtf.evtid_utils import decode_eventid
# from mnvtf.hdf5_readers import MnvHDF5LegacyReader as HDF5Reader
class MnvDataReader:
def __init__(
self,
filename,
n_events=10,
views=['x', 'u', 'v'],
img_sizes=(94, 47),
n_planecodes=173,
tfrecord_reader_type=None,
data_format='NHWC',
seg_data=False
):
"""
currently, only work with compressed tfrecord files; assume compression
for hdf5 is inside, etc.
"""
self._f = None
self.filename = filename
self.n_events = n_events
self.views = views
self.img_sizes = img_sizes
self.n_planecodes = n_planecodes
self.img_shp = (127, img_sizes[0], img_sizes[1], 2)
self.data_format = data_format
self.tfrecord_reader_type = tfrecord_reader_type
self.seg_data = seg_data
ext = self.filename.split('.')[-1]
self.compression = ext if ext in ['zz', 'gz'] else ''
if self.compression in ['zz', 'gz']:
self.filetype = filename.split('.')[-2]
else:
self.filetype = ext
self.hdf5_extensions = ['hdf5', 'h5']
self.tfr_extensions = ['tfrecord']
def _read_tfr(self):
if self.tfrecord_reader_type is None:
# attempt to infer the reader type from the filename.
tfrecord_reader_type = self.filename.split('/')[-1]
tfrecord_reader_type = tfrecord_reader_type.split('_')[0]
self.tfrecord_reader = get_reader_class(
tfrecord_reader_type, use_dataset=False
)
data_dict = {}
data_dict['energies+times'] = {}
dd = make_data_reader_dict(
filenames_list=[self.filename],
batch_size=self.n_events,
name='test_read',
compression=self.compression,
img_shp=self.img_shp,
data_format=self.data_format,
n_planecodes=self.n_planecodes
)
reader = self.tfrecord_reader(dd)
# get an ordered dict
batch_dict = reader.batch_generator()
def tp_tnsr(tnsr):
return np.transpose(tnsr, [0, 3, 1, 2])
with tf.Session() as sess:
sess.run(tf.local_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
try:
tensor_list = sess.run(batch_dict.values())
results = OrderedDict(zip(batch_dict.keys(), tensor_list))
data_dict['energies+times']['x'] = tp_tnsr(results[HITIMESX])
data_dict['energies+times']['u'] = tp_tnsr(results[HITIMESU])
data_dict['energies+times']['v'] = tp_tnsr(results[HITIMESV])
data_dict[EVENTIDS] = results[EVENTIDS]
if ZS in results.keys():
data_dict[ZS] = results[ZS]
# need to 'de-one-hot' these...
for k in [PLANECODES, SEGMENTS, N_HADMULTMEAS]:
if k in results.keys():
data_dict[k] = np.argmax(
results[k], axis=1
).reshape(results[k].shape[0], 1)
except tf.errors.OutOfRangeError:
print('Reading stopped - queue is empty.')
finally:
coord.request_stop()
coord.join(threads)
return data_dict
def _read_hdf5(self):
"""
possibilities: energy tensors, time tensors, energy+time tensors
(2-deep). get everything there into a dictionary keyed by type,
and then by view.
"""
data_dict = {}
data_dict['energies+times'] = {}
m = HDF5Reader(self.filename)
m.open()
n_events = m.get_nevents(group=EVENT_DATA)
n_read = min(n_events, self.n_events)
data_dict['energies+times']['x'] = m.get_data(HITIMESX, 0, n_read)
data_dict['energies+times']['u'] = m.get_data(HITIMESU, 0, n_read)
data_dict['energies+times']['v'] = m.get_data(HITIMESV, 0, n_read)
data_dict[EVENTIDS] = m.get_data(EVENTIDS, 0, n_read)
if self.seg_data:
data_dict['pid'] = {}
data_dict['pid']['x'] = m.get_data(PIDX, 0, n_read)
data_dict['pid']['u'] = m.get_data(PIDU, 0, n_read)
data_dict['pid']['v'] = m.get_data(PIDV, 0, n_read)
def get_hdf_dat(hdf_key):
try:
v = m.get_data(hdf_key, 0, n_read)
return v if len(v) else None
except ValueError as e:
print(e)
return []
for d in [PLANECODES, SEGMENTS, ZS, N_HADMULTMEAS]:
v = get_hdf_dat(d)
if v is not None and len(v):
data_dict[d] = v
m.close()
return data_dict
def read_data(self):
"""
return a dictionary of ndarrays, keyed by 'x', 'u', and 'v',
each with shape (N, C, H, W) - could be anywhere from 1 to 3 views.
"""
if self.filetype in self.hdf5_extensions:
return self._read_hdf5()
elif self.filetype in self.tfr_extensions:
return self._read_tfr()
else:
raise ValueError('Invalid file type extension!')
def make_plots(data_dict, max_events, normed_img, pred_dict, n_targets=6):
"""
cases:
* 'energies+times',
* 'energies' and 'times' separately,
* or 'energies' or 'times'
If 2-deep tensor, assume energy is index 0, time is index 1
"""
if n_targets == 5:
target_plane_codes = {9: 1, 18: 2, 27: 3, 44: 4, 49: 5}
elif n_targets == 6:
target_plane_codes = {9: 1, 18: 2, 27: 3, 36: 6, 45: 4, 50: 5}
else:
raise ValueError('Impossible number of targets!')
pkeys = []
for k in data_dict.keys():
if len(data_dict[k]) > 0:
pkeys.append(k)
print('Data dictionary present keys: {}'.format(pkeys))
types = ['energy', 'time']
views = ['x', 'u', 'v'] # TODO? build dynamically?
# only working with two-deep imgs these days
# plotting_two_tensors = True
def get_maybe_missing(data_dict, key, counter):
try:
return data_dict[key][counter]
except KeyError:
pass
return -1
evt_plotted = 0
for counter in range(len(data_dict[EVENTIDS])):
evtid = data_dict[EVENTIDS][counter]
segment = get_maybe_missing(data_dict, SEGMENTS, counter)
planecode = get_maybe_missing(data_dict, PLANECODES, counter)
n_hadmultmeas = get_maybe_missing(data_dict, N_HADMULTMEAS, counter)
(run, subrun, gate, phys_evt) = decode_eventid(evtid)
if evt_plotted > max_events:
break
status_string = 'Plotting entry %d: %d: ' % (counter, evtid)
title_string = '{}/{}/{}/{}'
title_elems = [run, subrun, gate, phys_evt]
if segment != -1 and planecode != -1:
title_string = title_string + ', segment {}, planecode {}'
title_elems.extend([segment, planecode])
if planecode in target_plane_codes.keys():
title_string = title_string + ', targ {}'
try:
title_elems.append(target_plane_codes[planecode[0]])
except IndexError:
# legacy HDF5 will return a scalar
title_elems.append(target_plane_codes[planecode])
if n_hadmultmeas != -1:
title_string = title_string + ', n_chghad {}'
title_elems.append(n_hadmultmeas)
if pred_dict is not None:
try:
prediction = pred_dict[str(evtid)]
title_string = title_string + ', pred={}'
title_elems.append(prediction)
except KeyError:
pass
print(status_string + title_string.format(*title_elems))
# run, subrun, gate, phys_evt = decode_eventid(evtid)
fig_height = len(types) * 2
fig_width = len(views) * 2
# use 6 & 4 in the DANN paper
# fig_height = 6
# fig_width = 4
grid_height = len(types)
grid_width = len(views)
fig = pylab.figure(figsize=(fig_width, fig_height))
fig.suptitle(title_string.format(*title_elems))
gs = pylab.GridSpec(grid_height, grid_width)
for i, t in enumerate(types):
datatyp = 'energies+times'
# set the bounds on the color scale
if normed_img:
minv = 0 if t == 'energy' else -1
maxv = 1
else:
maxes = []
mins = []
for v in views:
maxes.append(
np.abs(np.max(data_dict[datatyp][v][counter, i, :, :]))
)
mins.append(
np.abs(np.max(data_dict[datatyp][v][counter, i, :, :]))
)
minv = np.max(mins)
maxv = np.max(maxes)
maxex = maxv if maxv > minv else minv
minv = 0 if minv < 0.0001 else 0 if t == 'energy' else -maxv
maxv = maxex
for j, view in enumerate(views):
gs_pos = i * len(views) + j
ax = pylab.subplot(gs[gs_pos])
ax.axis('on')
ax.xaxis.set_major_locator(pylab.NullLocator())
ax.yaxis.set_major_locator(pylab.NullLocator())
cmap = 'gist_heat_r' if t == 'energy' else 'bwr'
cbt = 'energy' if t == 'energy' else 'times'
datap = data_dict[datatyp][view][counter, i, :, :]
# make the plot
im = ax.imshow(
datap,
cmap=pylab.get_cmap(cmap),
interpolation='nearest',
vmin=minv, vmax=maxv
)
# draw dashed lines in target locations
# if i == 0 and j == 0:
# for targ in [3, 7, 11, 15, 19, 21]:
# ax.vlines(
# targ, 0, 126,
# linestyle='--', linewidth=0.1, alpha=0.8
# )
cbar = pylab.colorbar(im, fraction=0.04)
if j == (len(views) - 1):
cbar.set_label(cbt, size=9)
cbar.ax.tick_params(labelsize=6)
pylab.title(t + ' - ' + view, fontsize=12)
if i == (len(types) - 1):
pylab.xlabel('plane', fontsize=10)
if j == 0:
pylab.ylabel('strip', fontsize=10)
figname = 'evt_%d.pdf' % (counter)
pylab.savefig(figname, bbox_inches='tight')
pylab.close()
evt_plotted += 1
def make_plots_seg(data_dict, max_events, normed_img, pred_dict):
"""
Copy of make_plots adapted for pid plots
"""
target_plane_codes = {9: 1, 18: 2, 27: 3, 36: 6, 45: 4, 50: 5}
pkeys = []
for k in data_dict.keys():
if len(data_dict[k]) > 0:
pkeys.append(k)
print('Data dictionary present keys: {}'.format(pkeys))
types = ['energy', 'time']
views = ['x', 'u', 'v'] # TODO? build dynamically?
# only working with two-deep imgs these days
# plotting_two_tensors = True
def get_maybe_missing(data_dict, key, counter):
try:
return data_dict[key][counter]
except KeyError:
pass
return -1
evt_plotted = 0
with PdfPages("evt_all.pdf") as pdf:
for counter in range(len(data_dict[EVENTIDS])):
evtid = data_dict[EVENTIDS][counter]
segment = get_maybe_missing(data_dict, SEGMENTS, counter)
planecode = get_maybe_missing(data_dict, PLANECODES, counter)
n_hadmultmeas = get_maybe_missing(
data_dict, N_HADMULTMEAS, counter
)
(run, subrun, gate, phys_evt) = decode_eventid(evtid)
if evt_plotted > max_events:
break
status_string = 'Plotting entry %d: %d: ' % (counter, evtid)
title_string = '{}/{}/{}/{}'
title_elems = [run, subrun, gate, phys_evt]
if segment != -1 and planecode != -1:
title_string = title_string + ', segment {}, planecode {}'
title_elems.extend([segment, planecode])
if planecode in target_plane_codes.keys():
title_string = title_string + ', targ {}'
title_elems.append(target_plane_codes[planecode[0]])
if n_hadmultmeas != -1:
title_string = title_string + ', n_chghad {}'
title_elems.append(n_hadmultmeas)
if pred_dict is not None:
try:
prediction = pred_dict[str(evtid)]
title_string = title_string + ', pred={}'
title_elems.append(prediction)
except KeyError:
pass
print(status_string + title_string.format(*title_elems))
# run, subrun, gate, phys_evt = decode_eventid(evtid)
fig_wid = 9
fig_height = 9
grid_height = 3
fig = pylab.figure(figsize=(fig_wid, fig_height))
fig.suptitle(title_string.format(*title_elems))
gs = pylab.GridSpec(grid_height, 3)
for i, t in enumerate(types):
datatyp = 'energies+times'
# set the bounds on the color scale
if normed_img:
minv = 0 if t == 'energy' else -1
maxv = 1
else:
maxes = []
mins = []
for v in views:
maxes.append(np.abs(
np.max(data_dict[datatyp][v][counter, i, :, :])
))
mins.append(np.abs(
np.min(data_dict[datatyp][v][counter, i, :, :])
))
minv = np.max(mins)
maxv = np.max(maxes)
maxex = maxv if maxv > minv else minv
minv = 0 if minv < 0.0001 else \
0 if t == 'energy' else -maxv
maxv = maxex
for j, view in enumerate(views):
gs_pos = i * 3 + j
ax = pylab.subplot(gs[gs_pos])
ax.axis('on')
ax.xaxis.set_major_locator(pylab.NullLocator())
ax.yaxis.set_major_locator(pylab.NullLocator())
cmap = 'Reds' if t == 'energy' else 'bwr'
cbt = 'energy' if t == 'energy' else 'times'
datap = data_dict[datatyp][view][counter, i, :, :]
# make the plot
im = ax.imshow(
datap,
cmap=pylab.get_cmap(cmap),
interpolation='nearest',
vmin=minv, vmax=maxv
)
cbar = pylab.colorbar(im, fraction=0.04)
cbar.set_label(cbt, size=9)
cbar.ax.tick_params(labelsize=6)
pylab.title(t + ' - ' + view, fontsize=12)
pylab.xlabel('plane', fontsize=10)
pylab.ylabel('strip', fontsize=10)
# plot pid
for j, view in enumerate(views):
gs_pos = 6 + j
ax = pylab.subplot(gs[gs_pos])
ax.axis('on')
ax.xaxis.set_major_locator(pylab.NullLocator())
ax.yaxis.set_major_locator(pylab.NullLocator())
cmap = 'tab10'
cbt = 'pid'
datap = data_dict["pid"][view][counter, 0, :, :]
# make the plot
im = ax.imshow(
datap,
cmap=pylab.get_cmap(cmap),
interpolation='nearest',
vmin=0, vmax=7
)
cbar = pylab.colorbar(
im, fraction=0.04, ticks=[0, 1, 2, 3, 4, 5, 6, 7]
)
cbar.ax.set_yticklabels(['nth',
'EM',
'mu',
'pi+',
'pi-',
'n',
'p',
'oth'])
cbar.set_label("pid", size=9)
cbar.ax.tick_params(labelsize=6)
pylab.title("pid" + ' - ' + view, fontsize=12)
pylab.xlabel('plane', fontsize=10)
pylab.ylabel('strip', fontsize=10)
pdf.savefig()
evt_plotted += 1
def get_predictions(pred_filename, n_items=200):
pd = {}
with open(pred_filename, 'r') as f:
for _ in range(n_items):
l = f.readline()
its = l.split(',')
evtid = its[0] + its[1] + its[2] + its[3]
pred = its[4]
pd[evtid] = pred
return pd
if __name__ == '__main__':
from optparse import OptionParser
parser = OptionParser(usage=__doc__)
parser.add_option('-f', '--file', dest='filename',
help='Dset file name', metavar='FILENAME',
default=None, type='string')
parser.add_option('-n', '--nevents', dest='n_events', default=10,
help='Number of events', metavar='N_EVENTS',
type='int')
parser.add_option('--imgw_x', dest='imgw_x', default=94,
help='Image width (x)', metavar='IMG_WIDTHX',
type='int')
parser.add_option('--imgw_uv', dest='imgw_uv', default=47,
help='Image width (uv)', metavar='IMG_WIDTHUV',
type='int')
parser.add_option('--n_planecodes', dest='n_planecodes', default=173,
help='Number of planecodes (onehot)',
metavar='N_PLANECODES', type='int')
parser.add_option('--normed_img', dest='normed_img', default=False,
help='Image from normalized source',
metavar='NORMED_IMG', action='store_true')
parser.add_option('-p', '--predictions', dest='predictions_file',
help='Predictions file name', metavar='PREDICTIONS',
default=None, type='string')
parser.add_option('--n_targets', dest='n_targets', default=6,
help='Number of targets (5 or 6)',
metavar='N_TARGETS', type='int')
parser.add_option('-t', '--reader_type', dest='reader_type',
help='Reader type (see mnvtf.utils.get_reader_class '
'for available options',
metavar='READER', default=None, type='string')
(options, args) = parser.parse_args()
if not options.filename:
print("\nSpecify file (-f):\n\n")
print(__doc__)
sys.exit(1)
img_sizes = (options.imgw_x, options.imgw_uv)
reader = MnvDataReader(
filename=options.filename,
n_events=options.n_events,
img_sizes=img_sizes,
n_planecodes=options.n_planecodes,
tfrecord_reader_type=options.reader_type,
seg_data=(options.reader_type == SEGMENTATION_TYPE)
)
dd = reader.read_data()
if options.predictions_file:
pd = get_predictions(options.predictions_file, options.n_events)
else:
pd = None
if options.reader_type == SEGMENTATION_TYPE:
make_plots_seg(dd, options.n_events, options.normed_img, pd)
else:
make_plots(
dd, options.n_events, options.normed_img, pd, options.n_targets
)