-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathunet.py
217 lines (181 loc) · 8.17 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#!/usr/bin/env python
import numpy as np
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import TensorDataset
from scipy.misc import imshow
from tqdm import tqdm
from loadCOCO import loadCOCO, Rescale, RandomCrop
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv64 = nn.Conv2d(3, 64, 3, padding=1)
self.conv128 = nn.Conv2d(64, 128, 3, padding=1)
self.conv256 = nn.Conv2d(128, 256, 3, padding=1)
self.conv512 = nn.Conv2d(256, 512, 3, padding=1)
self.conv1024 = nn.Conv2d(512, 1024, 3, padding=1)
self.upconv1024 = nn.ConvTranspose2d(1024, 512, 2, stride=2)
self.dconv1024 = nn.Conv2d(1024, 512, 3, padding=1)
self.upconv512 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.dconv512 = nn.Conv2d(512, 256, 3, padding=1)
self.upconv256 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.dconv256 = nn.Conv2d(256, 128, 3, padding=1)
self.upconv128 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.dconv128 = nn.Conv2d(128, 64, 3, padding=1)
self.conv1 = nn.Conv2d(64, 183, 1)
self.pool = nn.MaxPool2d(2, 2)
def forward(self, x):
x1 = F.relu(self.conv64(x))
x2 = F.relu(self.conv128(self.pool(x1)))
x3 = F.relu(self.conv256(self.pool(x2)))
x4 = F.relu(self.conv512(self.pool(x3)))
x5 = F.relu(self.conv1024(self.pool(x4)))
ux5 = self.upconv1024(x5)
cc5 = torch.cat([ux5, x4], 1)
dx4 = F.relu(self.dconv1024(cc5))
ux4 = self.upconv512(dx4)
cc4 = torch.cat([ux4, x3], 1)
dx3 = F.relu(self.dconv512(cc4))
ux3 = self.upconv256(dx3)
cc3 = torch.cat([ux3, x2], 1)
dx2 = F.relu(self.dconv256(cc3))
ux2 = self.upconv128(dx2)
cc2 = torch.cat([ux2, x1], 1)
dx1 = F.relu(self.dconv128(cc2)) # no relu?
last = self.conv1(dx1)
return F.log_softmax(last) # sigmoid if classes arent mutually exclusv
def save_checkpoint(model, epoch, iteration, loss, vloss):
checkpoint = {}
checkpoint["model"] = model
checkpoint["epoch"] = epoch
checkpoint["iteration"] = iteration
checkpoint["loss"] = loss
checkpoint["vloss"] = vloss
fname = "checkpoint_" + str(epoch) + "_" + str(iteration) + ".dat"
torch.save(checkpoint, fname)
return
def train(resume_from=None):
###########
# Load Dataset #
###########
ims, labs = loadCOCO("/home/toni/Data/COCOstuff/")
imsTrain = ims[0:int(0.95*len(ims))]
labsTrain = labs[0:int(0.95*len(labs))]
imsValid = ims[int(0.95*len(ims)):]
labsValid = labs[int(0.95*len(labs)):]
imsTrainT = torch.Tensor(imsTrain)
labsTrainT = torch.ByteTensor(labsTrain)
imsValidT = torch.Tensor(imsValid)
labsValidT = torch.ByteTensor(labsValid)
trainset = TensorDataset(imsTrainT, labsTrainT)
validset = TensorDataset(imsValidT, labsValidT)
trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=1,
shuffle=True,
num_workers=2
)
validloader = torch.utils.data.DataLoader(
validset,
batch_size=1,
shuffle=True,
num_workers=2
)
net = Net()
if torch.cuda.is_available():
net.cuda()
criterion = nn.NLLLoss2d()
# optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
optimizer = optim.Adam(net.parameters(), lr=0.005)
if resume_from is not None:
checkpoint = torch.load(resume_from)
checkpoint_rate = 500
for epoch in range(12): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, start=0):
# get the inputs
inputs, labels = data
# wrap them in Variable
if torch.cuda.is_available():
inputs, labels = Variable(inputs.cuda()),\
Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels.long())
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.data[0]
if i % checkpoint_rate == checkpoint_rate-1: # print every N mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / checkpoint_rate))
# Validation test
running_valid_loss = 0.0
running_valid_acc = 0.0
for j, data in enumerate(validloader, 0):
inputs, labels = data
# wrap them in Variable
if torch.cuda.is_available():
inputs, labels = Variable(inputs.cuda()),\
Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels.long())
loss.backward()
optimizer.step()
# print statistics
running_valid_loss += loss.data[0]
running_valid_acc += \
((outputs.max(1)[1] == labels.long()).sum()).float() \
/ (labels.size()[1] * labels.size()[2])
print('[Validation loss]: %.3f' %
(running_valid_loss / len(imsValid)))
print('[Validation accuracy]: %.3f' %
((running_valid_acc / len(imsValid)) * 100.0).data[0])
save_checkpoint(
net.state_dict(),
epoch+1,
i + 1,
running_loss / checkpoint_rate,
running_valid_loss / len(imsValid))
running_loss = 0.0
print('Finished Training')
def test_image(paramsPath, img, label=None, showim=False):
resc = Rescale(500)
crop = RandomCrop(480)
im, lbl = resc(img, label)
im, lbl = crop(im, lbl)
im = np.transpose(im, (2, 0, 1))
im = np.array(im, dtype='float32')
im /= 255.0
im = (im*2)-1
im = np.expand_dims(im, axis=0)
imT = torch.Tensor(im)
labT = torch.ByteTensor(lbl)
imV, labV = Variable(imT), Variable(labT)
net = Net()
if torch.cuda.is_available():
net.cuda()
par = torch.load(paramsPath, map_location=lambda storage, loc: storage)
net.load_state_dict(par["model"])
if torch.cuda.is_available():
out = net(imV.cuda())
ouim = out.data.cpu()
else:
out = net(imV)
ouim = out.data
ouim = ouim.numpy()
if showim:
imshow(ouim[0])
return ouim, lbl