-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathapp.py
250 lines (220 loc) · 8.23 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#!/usr/bin/env python
# -*- coding:utf-8 _*-
"""
@author:quincy qiang
@license: Apache Licence
@file: app.py
@time: 2024/05/21
@contact: [email protected]
"""
import os
import shutil
import gradio as gr
import loguru
# from trustrag.applications.rag import RagApplication, ApplicationConfig
from trustrag.applications.rag_openai import RagApplication, ApplicationConfig
from trustrag.modules.reranker.bge_reranker import BgeRerankerConfig
from trustrag.modules.retrieval.dense_retriever import DenseRetrieverConfig
# 修改成自己的配置!!!
app_config = ApplicationConfig()
app_config.docs_path = "data/docs"
app_config.llm_model_path = "gpt-4o"
app_config.base_url = "https://api.openai-up.com/v1"
app_config.api_key = "llm_api_key"
retriever_config = DenseRetrieverConfig(
model_name_or_path="text-embedding-ada-002",
dim=1536, #openai_dim
index_path='examples/retrievers/dense_cache',
base_url = "https://api.openai-up.com/v1",
api_key = "embedding_api_key"
)
# rerank_config = BgeRerankerConfig(
# model_name_or_path="/data/users/searchgpt/pretrained_models/bge-reranker-large"
# )
app_config.retriever_config = retriever_config
# app_config.rerank_config = rerank_config
application = RagApplication(app_config)
application.init_vector_store()
def get_file_list():
if not os.path.exists(app_config.docs_path):
return []
return [f for f in os.listdir(app_config.docs_path)]
file_list = get_file_list()
def info_fn(filename):
gr.Info(f"upload file:{filename} success!")
def upload_file(file):
cache_base_dir = app_config.docs_path
if not os.path.exists(cache_base_dir):
os.mkdir(cache_base_dir)
filename = os.path.basename(file.name)
shutil.move(file.name, cache_base_dir + filename)
# file_list首位插入新上传的文件
file_list.insert(0, filename)
application.add_document(app_config.docs_path + filename)
info_fn(filename)
return gr.Dropdown(choices=file_list, value=filename,interactive=True)
def set_knowledge(kg_name, history):
try:
application.load_vector_store()
msg_status = f'{kg_name}知识库已成功加载'
except Exception as e:
print(e)
msg_status = f'{kg_name}知识库未成功加载'
return history + [[None, msg_status]]
def clear_session():
return '', None
def predict(input,
large_language_model,
embedding_model,
top_k,
use_web,
use_pattern,
history=None):
# print(large_language_model, embedding_model)
print(input)
if history == None:
history = []
if use_web == '使用':
web_content = application.retriever.search_web(query=input)
else:
web_content = ''
search_text = ''
if use_pattern == '模型问答':
result = application.get_llm_answer(query=input, web_content=web_content)
history.append((input, result))
search_text += web_content
return '', history, history, search_text
else:
response, _, contents = application.chat(
question=input,
top_k=top_k,
)
history.append((input, response))
for idx, source in enumerate(contents[:5]):
sep = f'----------【搜索结果{idx + 1}:】---------------\n'
search_text += f'{sep}\n{source}\n\n'
# print(search_text)
search_text += "----------【网络检索内容】-----------\n"
search_text += web_content
print("--------------------【模型回答】----------------\n")
print(response)
return '', history, history, search_text
with gr.Blocks(theme="soft") as demo:
gr.Markdown("""<h1><center>TrustRAG Application</center></h1>
<center><font size=3>
</center></font>
""")
state = gr.State()
with gr.Row():
with gr.Column(scale=1):
embedding_model = gr.Dropdown([
"text2vec-base",
"bge-large-v1.5",
"bge-base-v1.5",
],
label="Embedding model",
value="bge-large-v1.5")
large_language_model = gr.Dropdown(
[
"ChatGLM3-6B",
],
label="large language model",
value="ChatGLM3-6B")
top_k = gr.Slider(1,
20,
value=4,
step=1,
label="检索top-k文档",
interactive=True)
use_web = gr.Radio(["使用", "不使用"], label="web search",
info="是否使用网络搜索,使用时确保网络通常",
value="不使用", interactive=False
)
use_pattern = gr.Radio(
[
'模型问答',
'知识库问答',
],
label="模式",
value='知识库问答',
interactive=False)
kg_name = gr.Radio(["文档知识库"],
label="知识库",
value=None,
info="使用知识库问答,请加载知识库",
interactive=True)
set_kg_btn = gr.Button("加载知识库")
file = gr.File(label="将文件上传到知识库库,内容要尽量匹配",
visible=True,
file_types=['.txt', '.md', '.docx', '.pdf']
)
# uploaded_files = gr.Dropdown(
# file_list,
# label="已上传的文件列表",
# value=file_list[0] if len(file_list) > 0 else '',
# interactive=True
# )
with gr.Column(scale=4):
with gr.Row():
chatbot = gr.Chatbot(label='TrustRAG Application').style(height=650)
with gr.Row():
message = gr.Textbox(label='请输入问题')
with gr.Row():
clear_history = gr.Button("🧹 清除历史对话")
send = gr.Button("🚀 发送")
with gr.Row():
gr.Markdown("""提醒:<br>
[TrustRAG Application](https://github.com/TrustRAG-community/TrustRAG) <br>
有任何使用问题[Github Issue区](https://github.com/TrustRAG-community/TrustRAG)进行反馈.
<br>
""")
with gr.Column(scale=2):
search = gr.Textbox(label='搜索结果')
# ============= 触发动作=============
file.upload(upload_file,
inputs=file,
outputs=None)
set_kg_btn.click(
set_knowledge,
show_progress=True,
inputs=[kg_name, chatbot],
outputs=chatbot
)
# 发送按钮 提交
send.click(predict,
inputs=[
message,
large_language_model,
embedding_model,
top_k,
use_web,
use_pattern,
state
],
outputs=[message, chatbot, state, search])
# 清空历史对话按钮 提交
clear_history.click(fn=clear_session,
inputs=[],
outputs=[chatbot, state],
queue=False)
# 输入框 回车
message.submit(predict,
inputs=[
message,
large_language_model,
embedding_model,
top_k,
use_web,
use_pattern,
state
],
outputs=[message, chatbot, state, search])
demo.queue(concurrency_count=2).launch(
server_name='0.0.0.0',
server_port=7860,
share=True,
show_error=True,
debug=True,
enable_queue=True,
inbrowser=False,
)