We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
https://github.com/NLPJCL/RAG-Retrieval/tree/master/rag_retrieval
The text was updated successfully, but these errors were encountered:
https://blog.csdn.net/lipengcn/article/details/80373744 学习排序 Learning to Rank:从 pointwise 和 pairwise 到 listwise,经典模型与优缺点
https://zhuanlan.zhihu.com/p/111636490 Learning to Rank: pointwise 、 pairwise 、 listwise
Sorry, something went wrong.
Pairwise 方法 简介:
Pairwise 方法关注文档之间的相对顺序。它将排序问题转化为二分类问题,预测两个文档的相对顺序。 特点:
训练数据:每个训练样本是一对文档,并且有一个关联的标签,表示哪个文档应该排在前面。 优化目标:最小化错误排序的数量(例如,通过 hinge loss 或 logistic loss)
Pointwise 方法 简介:
Pointwise 方法将排序问题转换为回归或分类问题。它关注单个文档与查询的相关性得分。 特点:
训练数据:每个训练样本是一个查询-文档对,并且有一个关联的相关性得分(或标签)。 优化目标:最小化预测得分与实际相关性得分之间的差异(例如,通过均方误差或交叉熵损失)
Listwise 方法 简介:
Listwise 方法直接优化整个文档列表的排序。它考虑整个查询-文档列表,并根据排序结果进行优化。 特点:
训练数据:每个训练样本是一个查询及其对应的文档列表,以及整个列表的相关性得分(或排名)。 优化目标:直接优化排序指标(如 NDCG、MAP),通过定义在整个列表上的损失函数来实现。
yanqiangmiffy
No branches or pull requests
https://github.com/NLPJCL/RAG-Retrieval/tree/master/rag_retrieval
The text was updated successfully, but these errors were encountered: