forked from digitalmoleculardesign/bill_goddard_chem_120
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap07.tex
1950 lines (1741 loc) · 69.5 KB
/
chap07.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Hydrocarbons}
\section{Carbon-Carbon Single Bonds}
\subsection{Ethane}
We saw in Chapter 9, that the ground state of CH$_3$, methyl radical,
is planar with a singly occupied $p$ orbital perpendicular to the plane
\begin{equation}
\includegraphics{fg7a}
\label{chap7-eqno1}
\end{equation}
and we found that bonding an H to CH$_3$ leads to a tetrahedral
molecule, 109.5$^{\circ}$ bond angle. Now, consider bonding two methyl
radicals together to form ethane
\begin{equation}
\includegraphics[scale=0.75]{fg7b}
\label{chap7-eqno2}
\end{equation}
Just as with methane, the CH bond orbitals must remain orthogonal to
the newly formed CC bond, Pauli principle, with the result that the
geometry at each C is roughly tetrahedral. Of course, the CH and CC
bond orbitals are not equivalent and hence, the geometry is not quite
tetrahedral. In fact, the HCC angle is 111.2$^{\circ}$ while the HCH
angle is 107.7$^{\circ}$. There is not an accurate spectroscopic
value for C$_2$H$_6$. These are based on trends in other alkanes.
This suggests that interaction of the CH bond with the CC bond is more
unfavorable than interaction of the CH bond with an adjacent CH bond.
Next we must consider the orientation of the CH bonds on one C
relative to the CH bonds on the adjacent one. The dominant effect
arises from the Pauli principle, namely that the CH bonds on
different carbons must get orthogonal. In order to keep this
effect at a minimum, the geometry with lowest overlap between
CH bonds on different carbon atoms is favored. The extreme
cases are staggered and eclipsed with staggered favored.
\begin{equation}
\includegraphics{fg7c}
\label{chap7-eqno3}
\end{equation}
The staggered (left) has the least overlap, and the eclipsed (right)
has the most overlap.
The potential curve, for rotation of one group relative to the other,
has the form in Figure \ref{chap7-fig1}, with a well depth of 3 kcal.
The orbitals, from self-consistent generalized valence bond
calculations \cite{chap7-ref1} on ethane, are shown in Figure
\ref{chap7-fig2} and compared to those of methane in Figure
\ref{chap7-fig3}.
\begin{figure}
\includegraphics[scale=0.75]{fg7-1}
\caption{}
\label{chap7-fig1}
\end{figure}
\begin{figure}
\includegraphics[scale=0.75]{fg7-2}
\caption{Bonding orbitals in staggered ethane.}
\label{chap7-fig2}
\end{figure}
\begin{figure}
\includegraphics[scale=0.75]{fg7-3}
\caption{Bonding orbitals in methane.}
\label{chap7-fig3}
\end{figure}
\subsection{Propane}
Now consider replacing one of the CH bonds, in ethane, with a bond
to a methyl group to yield propane
\begin{equation}
\includegraphics{fg7-1a}
\label{chap7-eqno4}
\end{equation}
Keeping both methyl groups staggered leads to the geometry
\begin{equation}
\includegraphics{fg7-3a}
\label{chap7-eqno5}
\end{equation}
Now consider the details of the geometry
\begin{equation}
\includegraphics{fg7-3b}
\label{chap7-eqno6}
\end{equation}
The CCC angle is 112.4$^{\circ}$, indicating that repulsive interactions
between the C-C bonds dominate, between the two methyl groups. The
angles between a CH bond of the center carbon and a CC bond is
109.5$^{\circ}$, there are four such cases, just the tetrahedral value. The
angle between the two CH bonds of the centered carbon is
106.1$^{\circ}$. As for C$_2$H$_6$, this indicates that CH-CC
interactions are stronger than CH-CH interactions.
\subsection{Trends in Geometries}
Comparing the geometries of saturated hydrocarbons that have
been studied by microwave spectroscopy, CH$_4$, C$_3$H$_8$, and
iso-C$_4$H$_{10}$, leads to the following systematics:
\begin{enumerate}
\item The CH bond length is 1.095 $\pm$ 0.001 \AA. Exceptions to
this are a CH bond trans to a CC bond, it is 1.089 \AA, and
a CH bond trans to three CH bonds, is 1.108 \AA.
\item The CC bond length is 1.526 $\pm$ 0.001 \AA.
\item CCC angles are
\begin{equation}
\includegraphics{fg7-3c}
\label{chap7-eqno7}
\end{equation}
\item HCH angles are as follows:
\begin{equation}
\includegraphics{fg7-3d}
\label{chap7-eqno8}
\end{equation}
\end{enumerate}
\subsection{Diamond}
Starting with ethane and replacing all CH bonds with Me groups, leads
to
\begin{equation}
\includegraphics{fg7-3e}
\label{chap7-eqno9}
\end{equation}
with a staggered geometry. Continuing to replace CH groups with Me
groups \emph{ad infinitum} leads to diamond with all carbon atoms bonded
tetrahedrically to other carbon atoms, and all bonds staggered with
respect to those of adjacent carbons. A side view is
\begin{equation}
\includegraphics{fg7-3f}
\label{chap7-eqno10}
\end{equation}
Some aspects to notice in this structure are:
\begin{enumerate}
\item staggered infinite chains
\begin{equation}
\includegraphics{fg7-3g}
\label{chap7-eqno11}
\end{equation}
\item six-membered rings
\begin{equation}
\includegraphics{fg7-3h}
\label{chap7-eqno12}
\end{equation}
These rings correspond to the chair form of cyclohexane,
C$_6$H$_{12}$,
\begin{equation}
\includegraphics{fg7-3i}
\label{chap7-eqno13}
\end{equation}
\end{enumerate}
\begin{figure}
\includegraphics[scale=0.75]{fg7-4}
\caption{The diamond structure: if the side of the cube is
length $a$, then atoms are at the positions of
(0,0,0), (${1 \over 2}a, {1 \over 2}a,0$), (${1 \over 2}a,0,{1 \over
2}a$), ($0,{1 \over 2}a, {1 \over 2}a$), (${1 \over 4}a, {1 \over
4}a, {1 \over 4}a$), (${3 \over 4}a, {3 \over 4}a, {1 \over 4}a$),
(${3 \over 4}a, {1 \over 4}a, {3 \over 4}a$), and (${1 \over 4}a, {3
\over 4}a, {3 \over 4}a$). All other positions obtained by adding or
subtracting an integer number times $a$ to any of these coordinates.}
\label{chap7-fig4}
\end{figure}
An alternative view of the diamond structure is in terms of cubes that
can be repeated to fill all space, see Figure \ref{chap7-fig4}. Here,
there are atoms at the eight corners of the cube, at the six faces of
the cube, and four atoms internal to the cube. There are not,
however, 18 atoms associated with this cube, only one-eighth of each
corner atom, and one-half of each face atom are inside the cube.
Thus, the number of atoms inside the cube is $8 \times {1 \over 8} + 6
\times {1 \over 2} + 4 = 8$ atoms, and the volume per atom is ${1
\over 8}a^3$.
The C-C bond distance for diamond is 1.5445 \AA, which is slightly
longer than the value 1.526 \AA characteristic of simple alkanes.
\section{Carbon-Carbon Multiple Bonds}
\subsection{Ethylene, Valence Bond Description}
Starting with two methylene radicals (CH$_2$) in the ground state
($^3$B$_1$)
\begin{equation}
\includegraphics{fg7-4a}
\label{chap7-eqno14}
\end{equation}
and forming ethylene, H$_2$C$=$CH$_2$, we can form both a $\sigma$ bond, and
a $\pi$ bond, leading to a planar molecule
\begin{equation}
\includegraphics{fg7-4b}
\label{chap7-eqno15}
\end{equation}
In the triplet state of CH$_2$ the HCH bond angle is 132.3$^{\circ}$, but
forming a bond to the carbon should decrease this angle, because of
Pauli repulsion due to new bond pair. Thus in CH$_3$ the
bond angle is decreased to 120$^{\circ}$ and in ethylene,
\begin{equation}
\includegraphics{fg7-4c}
\label{chap7-eqno16}
\end{equation}
the HCH bond angle is decreased further to 117.6$^{\circ}$.
The resulting self-consistent GVB orbitals \cite{chap7-ref1} of
ethylene are shown in Figure \ref{chap7-fig5}, compared with the
orbitals of CH$_2$ ($^3$B$_1$) in Figure \ref{chap7-fig6}.
\begin{figure}
\includegraphics[scale=0.75]{fg7-5}
\caption{C$_2$H$_4$}
\label{chap7-fig5}
\end{figure}
\begin{figure}
\includegraphics[scale=0.75]{fg7-6}
\caption{CH$_2$($^3$B$)_1$ at 135$^{\circ}$.}
\label{chap7-fig6}
\end{figure}
Consider now the case where the plane of one methylene group is
rotated by an angle of 90$^{\circ}$ with respect to the other, about
the CC axis. In this case, (\ref{chap7-eqno2}) becomes
\begin{equation}
\includegraphics{fg7-6a}
\end{equation}
so that only the $\sigma$ bond is formed. The nonbonding orbitals
$\pi_{\ell}$ and $\pi_r$ can be combined into singlet and triplet states:
\begin{equation}
{\rm singlet:} ~ \psi_N = \left( \pi_{\ell} \pi_r + \pi_r \pi_{\ell}
\right) \left( \alpha \beta - \beta \alpha \right) N ~ state
\label{chap07-eqno17}
\end{equation}
\begin{equation}
{\rm triplet:} ~ \psi_T = \left( \pi_{\ell} \pi_r - \pi_r \pi_{\ell}
\right) \left( \alpha \beta + \beta \alpha \right) T ~ state
\label{chap07-eqno18}
\end{equation}
where the singlet state is referred to as $N$, for normal or ground
state, and the triplet state is referred to as $T$. Based on Hund's
rule, we would expect the $T$ state to be slightly lower than the
$N$ state, for 90$^{\circ}$ twist. However, since these orbitals are
localized on different centers, the energy splitting should
be quite small, approximately 1.4 kcal. In fact, other small effects
lead to the $N$ state at 90$^{\circ}$ being
about 1 kcal below the $T$ state. This is explained in the Appendix,
however, for our purposes it is only important that these states
are nearly degenerate.
Comparing the energies of twisted and planar ethylene, leads to the
results in Figure \ref{chap7-fig7}. Thus, the singlet state prefers
planar geometry since the overlap of the $\pi_{\ell}$ and $\pi_r$
orbitals leads to a strong $\pi$ bond. However, for the triplet
state, the $\pi_{\ell}$ and $\pi_r$ orbitals must be orthogonalized to
each other, and hence, this state prefers the 90$^{\circ}$ twisted
geometry.
\begin{figure}
\includegraphics[scale=0.75]{fg7-7}
\caption{}
\label{chap7-fig7}
\end{figure}
\subsection{The Rotational Barrier}
According to Figure \ref{chap7-fig7} the energy to twist, $N$ state,
ethylene by 90$^{\circ}$ is 65 kcal, breaking the $\pi$ bond. This
barrier has been observed experimentally$^2$ by studying the kinetics
for cis-trans isomerization, of
\begin{equation}
% missing figure cis-trans isomerization, p7-14
\end{equation}
As the molecules is rotated, the strength of the $\pi$ bond is
weakened, and the CC bond length increases. Thus, for the $N$ state
CC = 1.34 \AA\ at $\theta = 0^{\circ}$, and 1.50 \AA\ at
$\theta = 90^{\circ}$.
In the $T$ state, the optimum geometry is twisted, $\theta =
90^{\circ}$, since triplet pairing of the orbitals prefers $S = 0$.
As the molecule is twisted toward the planar geometry the bond length
increases from CC = 1.50 \AA\ at $\theta = 90^{\circ}$ to 1.57 \AA\ at
$\theta = 0^{\circ}$, and the energy barrier is 25 kcal. Note that in
Figure \ref{chap7-fig7} we show the $T$ to $N$ energy separation at
$\theta = 0$, using the ground state geometry; the adiabatic
excitation energy for $\theta = 0^{\circ}$ is 91 kcal.
\subsection{Ethylene, Molecular Orbital Description}
In the MO description of ethylene there are two
$\pi$ MOs
\begin{eqnarray}
\pi_u &= {(\pi_{\ell} + \pi_r) \over \sqrt{2(1+s)}} ~{\rm bonding}\cr
\pi_g &= {(\pi_{\ell} + \pi_r) \over \sqrt{2(1+s)}} ~{\rm antibonding}
\label{chap07-eqno19}
\end{eqnarray}
Thus, in the molecular orbital description, the ground state is
\begin{equation}
N : \pi_u \pi_u \left( \alpha \beta - \beta \alpha \right)
\label{chap07-eqno20}
\end{equation}
and the lowest excited states
\begin{equation}
T : \left( \pi_u \pi_g - \pi_g \pi_u \right) \left( \alpha \beta +
\beta \alpha \right)
\label{chap07-eqno21}
\end{equation}
\begin{equation}
V : \left( \pi_u \pi_g + \pi_g \pi_u \right) \left( \alpha \beta -
\beta \alpha \right)
\label{chap07-eqno22}
\end{equation}
are obtained by the excitation $\pi_u \rightarrow \pi_g$ from the
ground state. There is also an additional state,
\begin{equation}
Z : \pi_g \pi_g \left( \alpha \beta-\beta \alpha \right)
\end{equation}
but it is much higher, and will not be considered here.
First, we consider the $T$ and $V$ excited states. The energies are
\begin{eqnarray}
E_T &=& E_0 - K_{gu}\cr
E_V &=& E_0 + K_{gu}
\label{chap07-eqno23}
\end{eqnarray}
where, from Hund's rule, the $V$ state is higher, by $2K_{gu}$.
The first question is why the valence bond description did not have a
$V$ state. Substituting (\ref{chap7-eqno12}) into
(\ref{chap7-eqno15}), we find
\begin{equation}
\left( \pi_u \pi_g + \pi_g \pi_u \right) = \pi_{\ell} \pi_{\ell} -
\pi_r \pi_r
\end{equation}
where a normalization term is deleted. Thus, the $V$ state is an
ionic wavefunction in which both $\pi$ electrons are either on the left
or both on the right, but combined to a net wavefunction for which
both $C$ are equivalent. In the valence bond description, we obtain
two covalent states
\begin{equation}
N : \pi_{\ell} \pi_r + \pi_r \pi_{\ell}
\label{chap07-eqno24}
\end{equation}
\begin{equation}
T : \left( \pi_{\ell} \pi_r - \pi_r \pi_{\ell} \right) = \pi_g
\pi_u - \pi_u \pi_g
\label{chap07-eqno25}
\end{equation}
and two ionic states
\begin{equation}
V : \pi_{\ell} \pi_{\ell} - \pi_r \pi_r = \pi_g \pi_u + \pi_u
\pi_g
\label{chap07-eqno26}
\end{equation}
\begin{equation}
Z : \pi_{\ell} \pi_{\ell} + \pi_r \pi_r
\label{chap07-eqno27}
\end{equation}
The wavefunction (\ref{chap7-eqno20}) for $Z$ has a high overlap with
the wavefunction for the $N$ state. The real wavefunction for the
excited state must be orthogonal to $N$ leading to a very high energy
for $Z$. Thus, the molecular orbital and valence bond description of
the $T$ and $V$ states are equivalent. They differ for the $N$ state
since
\begin{equation}
\pi_u \pi_u = \left( \pi_{\ell} \pi_r + \pi_r \pi_{\ell} \right) +
\left( \pi_{\ell} \pi_{\ell} - \pi_r \pi_r \right),
\label{chap07-eqno28}
\end{equation}
where $(\pi_{\ell} \pi_r + \pi_r \pi_{\ell})$ is the covalent, and
$(\pi_{\ell} \pi_{\ell} - \pi_r \pi_r)$ is the ionic. Thus,
the molecular orbital wavefunction forces equal ionic and covalent
character. Alternatively, the generalized valence bond wavefunction
may be written as
\begin{equation}
\left( \pi_{\ell} \pi_{\ell} + \pi_r \pi_r \right) = C_1 \pi_u
\pi_u - C_2 \pi_g \pi_g
\label{chap07-eqno29}
\end{equation}
indicating that the dominant electron correlation terms are included.
\subsection{Carbon-Carbon Triple Bonds}
Starting with two CH radicals, ${^4\Sigma}^-$ state, and forming
acetylene, HC$\equiv$CH, we make a triple bond; that is, a $\sigma$
bond and two $\pi$ bonds
\begin{equation}
\includegraphics{fg7-7a}
\label{chap7-eqno30}
\end{equation}
There is a problem here, however. The ground state of CH is the
${^2\Pi}$ state (top) not the ${^4\Sigma}^-$ state (bottom)
\begin{equation}
\includegraphics{fg7-7b}
\label{chap7-eqno32}
\end{equation}
shown in (\ref{chap7-eqno30}) and which is related to acetylene.
Thus, in making the triple bond, we must promote each CH from the
${^2\Pi}$ to the ${^4\Sigma}^-$ state at a cost of 17 kcal each. As a
result, the triple bond is 34 kcal weaker than might otherwise have
been expected.
The self-consistent generalized valence bond orbitals$^1$ of acetylene
are shown in Figure \ref{chap7-fig8} and compared with those of both
states of CH in Figure \ref{chap7-fig9}.
\begin{figure}
\includegraphics[scale=0.75]{fg7-8}
\caption{C$_2$H$_2$.}
\label{chap7-fig8}
\end{figure}
\begin{figure}
\includegraphics[scale=0.6,angle=90]{fg7-9}
\caption{}
\label{chap7-fig9}
\end{figure}
The molecular orbital description of the $\pi$ system of acetylene
is $(\pi_{ux})^2(\pi_{uy})^2$ or symbolically $(\pi_u)^4$.
Thus, low-lying excited states would have the configuration of
$(\pi_u)^3(\pi_g)^1$. This leads to four configurations
\begin{eqnarray}
\left( \pi_{ux} \right)^2 & \left( \pi_{uy} \right)^1 \left(
\pi_{gx} \right)^1\cr
\left( \pi_{ux} \right)^2 & \left( \pi_{uy} \right)^1 \left(
\pi_{gy} \right)^1\cr
\left( \pi_{ux} \right)^1 & \left( \pi_{uy} \right)^2 \left(
\pi_{gx} \right)^1\cr
\left( \pi_{ux} \right)^2 & \left( \pi_{uy} \right)^2 \left(
\pi_{gy} \right)^1
\label{chap07-eqno33}
\end{eqnarray}
each of which leads to both triplet and singlet states. Proper analysis of
the symmetry leads to
\begin{equation}
{^3\Sigma}^+_u , {^3\Delta}^-_u , {^3\Sigma}^-_u , {^1\Sigma}^-_u ,
{^1\Delta}_u , {^1\Sigma}^+_u
\label{chap07-eqno34}
\end{equation}
in order of increasing energy.
Consider the geometry of the triplet state
\begin{equation}
\includegraphics{fg7-9a}
\label{chap7-eqno35}
\end{equation}
where the two $\pi$ orbitals in the plane are triplet coupled. Allowing
distortions such as
\begin{equation}
\includegraphics{fg7-9b}
\label{chap7-eqno37}
\end{equation}
decreases the $\pi_{\ell}\pi_r$ overlap, stabilizing the $\sigma$ triplet
state. Based on the geometry of triplet CH$_2$, 132$^{\circ}$, we would
expect each HCC bond to be approximately 132$^{\circ}$ in order to optimize the
orientation of the $\sigma$ bonds on each C. Calculations predict
the cis form is bent 128$^{\circ}$, and is more stable than the trans
form, 131$^{\circ}$.
\subsection{Rotational Symmetry in Acetylene}
The $\pi$ bonds of acetylene (\ref{chap7-eqno30}) are drawn in two
orthogonal planes, e.g., $xz$ and $yz$. However, the total
wavefunction is symmetric about the CC axis, i.e., a ${^1\Sigma}_g$
state. This can be seen by considering the wavefunction
\begin{equation}
A \left( \pi_x \alpha \right) \left( \pi_y \alpha \right)
\label{chap07-eqno38}
\end{equation}
Rotating the wavefunction about the CC axis by an angle gamma
leads to new orbitals
\begin{eqnarray}
{\bar{\pi}}_x &=& \pi_x \cos \gamma + \pi_y \sin \gamma\cr
{\bar{\pi}}_y &=& - \pi_x \sin \gamma + \pi_y \cos \gamma
\label{chap07-eqno39}
\end{eqnarray}
The resulting wavefunction is
\begin{eqnarray}
A \left[ \left( {\bar{\pi}}_x \alpha \right) \left( {\bar{\pi}}_y
\alpha \right) \right] & = \cos^2 \gamma A \left[ \left( \pi_x \alpha
\right) \left( \pi_y \alpha \right) \right] - \cos \gamma \sin \gamma
A \left[ \left( \pi_x \alpha \right) \left( \pi_x \alpha \right)
\right]\cr
& - \sin^2 \gamma \underbrace{A \left[ \left( \pi_y \alpha \right) \left( \pi_x
\alpha \right) \right]}_{- A \left[
\left( \pi_x \alpha \right) \left( \pi_y \alpha \right) \right]}
+ \sin \gamma \cos \gamma A \left[ \left(
\pi_y \alpha \right) \left( \pi_y \alpha \right) \right]\cr
& = \left( \cos^2 \gamma + \sin^2 \gamma \right) A \left[ \left(
\pi_x \alpha \right) \left( \pi_y \alpha \right) \right] = A \left[
\left( \pi_x \alpha \right) \left( \pi_y \alpha \right)
\right].
\label{chap07-eqno40}
\end{eqnarray}
That is, the wavefunction (\ref{chap7-eqno38}) is left invariant,
unchanged, upon rotation about the CC axis. Hence,
(\ref{chap7-eqno38}) is a $\sigma$ state.
Consequently, the wavefunction
\begin{equation}
A \left[ \left( \pi_x \alpha \right) \left( \pi_x \beta \right)
\left( \pi_y \alpha \right) \left( \pi_y \beta \right)
\right]
\label{chap07-eqno41}
\end{equation}
is also a $\Sigma$ state. Considering spin, inversion, and vertical
reflection. we see that (\ref{chap7-eqno41}) is ${^1\Sigma}^+_g$.
\bigskip
\section{Bond Energies}
Next we will consider the energetics of CC bonds. How strong are the
bonds? First, however, we must consider what a bond energy is.
Consider a molecule $AB$ that dissociates into fragments $A$ and $B$,
each of which may be molecules, upon breaking the bond between two
atoms. As indicated in Figure \ref{chap7-fig10}(a), the bond energy
$D(A - B)$ is just the energy difference
\begin{equation}
D_e (A-B) = E_e (A) + E_e (B) - E_e (A-B)
\label{chap07-eqno42}
\end{equation}
where the $E_e$ indicates that the fragments $A$ and $B$ have relaxed to
their equilibrium configurations, and that $AB$ is in its equilibrium
configuration.
\begin{figure}
\includegraphics[scale=0.75]{fg7-10}
\caption{}
\label{chap7-fig10}
\end{figure}
The quantity (\ref{chap7-eqno42}) is obtained directly from
theoretical calculations of the energy as a function of geometry,
however, it cannot be measured directly. The reason is that even at
$T = 0^{\circ}$K, there is zero-point energy in an the vibrational
modes of $A-B$, $A$, and $B$ so that the experiment measures
\begin{equation}
E_0 = E_e + V_0
\label{chap07-eqno43}
\end{equation}
where $V_0$ is the vibrational energy in the ground, $v = 0$, vibrational
levels. Thus, the experimental bond energy, at $T = 0^{\circ}$K, is
\begin{equation}
D_0 (A - B) = E_0 (A) + E_0 (B) - E_0 (AB)
\label{chap07-eqno44}
\end{equation}
\subsection{Temperature Corrections}
To make matters more complicated, the experiments are often carried
out at finite temperature, to be specific we will assume
$T = 298^{\circ}$K = 77$^{\circ}$F, somewhat less than summertime
room temperature much more than the wintertime value, in these energy conscious
times. The experiments lead to energy changes at constant
pressure and hence, the enthalpy $H = E + pV$ in the relevant
quality. The bond energy at finite temperature is defined as
\begin{equation}
D_T(A - B) = H_T(A) + H_T(B) - H_T(A - B)
\label{chap07-eqno45}
\end{equation}
Thus, the relation between the bond energy at $T = 0^{\circ}$K, and that
at 298$^{\circ}$K is
\begin{eqnarray}
D_{298^{\circ}{\rm K}} - D_{0^{\circ}{\rm K}} & =& \sum^{T}_{0} \left[ C_p (A) +
C_p (B) - C+p (AB) \right] dt\cr
& \approx & 0.9 ~ {\rm kcal/mol ~ if} ~ A ~ {\rm and} ~ B ~ {\rm are ~ atoms}\cr
& \approx & 1.5 ~ {\rm kcal/mol ~ if} ~ A ~ {\rm is ~ an ~ atom, ~ and} ~
B ~ {\rm is ~ nonlinear}\cr
& \approx& 2.4 ~ {\rm kcal/mol ~ if} ~ A ~ {\rm and} ~ B ~ {\rm are ~
nonlinear}.
\end{eqnarray}
Only the translational and rotational contributions are included
here. This assumes that all vibrational energies are much greater
than $RT = 0.6$ kcal = 210 cm$^{-1}$. Thus, $C_p$ in kcal/mol is ${5
\over 2}R$ for atoms, ${7 \over 2}R$ for linear
molecules and $4R$ for nonlinear molecules.
A slight additional complication is that the experimental data
are not tabulated as absolute enthalpies. Rather the enthalpy,
say of C$_2$H$_6$, is referenced to that of the free elements carbon
and hydrogen each in their ground states, graphite for carbon
and H$_2$ for hydrogen. This, relative enthalpy, is referred to as the
heat of formation and denoted as $\Delta H^0_{fT}$. Thus,
$\Delta H^0_{f,298^{\circ}{\rm K}}$ (C$_2$H$_6$) = $-$20.24 kcal/mol
means that 20.24 kcal of energy is liberated upon forming one
mole of ethane, at atmospheric pressure and 298$^{\circ}$K, from appropriate
amounts of hydrogen gas and graphite, at atmospheric pressure and
298$^{\circ}$K. Since
\begin{equation}
\Delta H^0_{f,298^{\circ}{\rm K}} (\chem{CH_3}) = 34.82~\mathrm{kcal/mol},
\end{equation}
we see that
\begin{equation}
D_{298^{\circ}{\rm K}} (\chem{H_3C-CH_3}) = 2 \times 34.82 +
20.24 = 89.88 ~ {\rm kcal/mol}
\label{chap07-eqno47}
\end{equation}
Using (\ref{chap7-eqno46}), we obtain
\begin{equation}
D_{0^{\circ}{\rm K}} (\chem{H_3C-CH_3}) = 89.9 - 2.4 = 87.5
~ {\rm kcal/mol}
\label{chap07-eqno48}
\end{equation}
When making comparisons to theory or to spectroscopic
experiments, the bond energy at 0$^{\circ}$K is more convenient.
However, in discussing chemical reactions, the bond energy at
298$^{\circ}$K is generally most convenient. In this course it will be
understood that bond energies are at 298$^{\circ}$K unless stated otherwise.
\medskip
\subsection{Ethane}
\begin{table}
\caption{ Geometry and zero point energy, $V_0$.
$V_0$ is based on the harmonic approximation and is probably not
accurate to more than 0.1 kcal/mol. All values in square brackets
are based on crude estimates.}
\label{chap7-tab1a}
\begin{tabular}{ccccc}\\ \hline
&\multicolumn{3}{c}{Geometry}&$V_0$\cr
& CC & CH & HCH\cr
& (\AA) & (\AA) & & (kcal)\cr
HC $\equiv$ CH & 1.208 & 1.056 & & 16.18\cr
H$_2$CH-CH$_2$ & 1,339 & 1.086 & 117.6$^{\circ}$ & 30.89\cr
H$_2$CCH$_2$ & 1.50 & & 117.6$^{\circ}$ & [28.6]\cr
H$_3$C$-$CH$_3$ & 1.526 & 1.095 & 107.7$^{\circ}$ & 43.90\cr
CH$_2$(${^3\Pi}$) & - & 1199$^c$ & - & 4.09\cr
CH$_2$(${^3B}_1$) & - & 1.084$^a$ & 133.2$^a$ & 10.4$^a$\cr
CH$_3$ & - & 1.079$^e$ & 120 & 18.18\cr
CH$_4$ & - & 1.091$^e$ & 109.46$^{\circ}$ & 27.10\cr
\hline
\end{tabular}
\end{table}
\begin{table}
\caption{Average vibrational frequencies, cm$^{-1}$.}
\label{chap7-tab1b}
\begin{tabular}{cccccc}\\ \hline
& CC & CH & HCH & CH$_n$ & Other\cr
& & Scissors & Rock\cr
HC $\equiv$ CH & 1974$^b$ & 3332(2) & - & 671(4)\cr
H$_2$CH$-$CH$_2$ & 1623$^b$ & 3056(4) & 1393(2) & 995(5)\cr
H$_2$CCH$_2$ & [995] & 3056(4) & 1393(2) & [995](4)\cr
H$_3$C$-$CH$_3$ & 995$^b$ & 2960(6) & 1440(6) & 1006(4) & Torsion
289\cr
CH$_2$(${^3\Pi}$) & - & 2859$^c$ & - & -\cr
CH$_2$(${^3B}_1$) & - & 3080(2)$^d$ & 1114\cr
CH$_3$ & - & 3123(3)$^d$ & 1383(2) & - & Inversion 580\cr
CH$_4$ & - & 2994(4)$^b$ & 1397(5) & -\cr
\hline
\end{tabular}\\
$^a$ L. B. Harding and W. A. Goddard III, CPL, volume 55, 217 (1978).
$^b$ NSRDS-NBS 92, T. Shimanouchi, Tables of Molecules Vibrational
Frequencies.
$^c$ G. Herzberg and K. Huber, Diatomic Molecules.
$^d$ JANAF Tables.
$^e$ G. Herzberg, Electronic Spectra of Polyatomic Molecules.
$^f$ $V_0$ is based on the harmonic approximation and is probably
not accurate to more than 0.1 kcal/mol.
\end{table}
As an example, consider ethane. The bond energy at 0$^{\circ}$K is
$D_{0^{\circ}{\rm K}} =$ 87.5 kcal/mol. In order to obtain $D_e$, we
must obtain zero point energies of ethane and methyl. The vibrational
frequencies of these molecules are listed in Table
\ref{chap7-table1a}--\ref{chap7-table1b}. For a harmonic oscillator
of frequency $\nu$ (Hz) the zero point energy is $V_0 = {1 \over 2} h
\nu = {1 \over 2} \hbar \omega$. Thus, an approximate estimate of the
zero point energy is
\begin{equation}
V_0 = {1 \over 2} \sum_{i} \left( h \nu_i \right).
\end{equation}
as indicated in Table \ref{chap7-tab1a}--\ref{chap7-tab1b}, this leads
to $V_0$(CH$_3$) = 18.2 kcal, and $V_0$(C$_2$H$_6$) = 43.9 kcal, and
hence, $D_e = D_0 + 7.5$ kcal/mol = 95.0 kcal/mol.
In breaking the CC bond of ethane, the geometry changes from
CC = 1.526 \AA, HCH = 107.7$^{\circ}$, CH = 1.095 \AA\
to CC = $\infty$, HCH = 120$^{\circ}$, CH = 1.079 \AA. Thus,
the actual bond energy includes not only a quantity intrinsic to
ethane but also a relaxation ion energy associated with the
fragment. A useful way to think about this is to separate the bond
breaking process into two steps. First, the bond snap. Here we consider
stretching the CC bond of ethane to infinity while keeping all other
bonds fixed, e.g., HCH = 107.7$^{\circ}$ and CH = 1.095\AA. Then,
secondly, the fragment relaxation. Here we obtain the CH$_3$ fragments
to relax to their equilibrium geometry, HCH = 120$^{\circ}$ and CH =
1.097 \AA.
The relaxation energy for CH$_3$ is 7.3 kcal, so that the bond snap
energy of ethane is
\begin{equation}
D^{snap}_e (\chem{H_3C-CH_3}) = 95.0 + 14.6 = 109.6 {\rm kcal}.
\end{equation}
This bond snap energy is intrinsic to the electronic structure of the
bonded molecule. Hence, comparisons of bond snap energies of various
molecules might exhibit a regular behavior that could be interpreted
in terms of interactions within the molecule, as distinct from
differential effects in relaxation of the fragments.
\subsection{Effects of Ligands upon CC Bond Energies}
\begin{table}
\caption{CC single bond energies, kcal/mole at 298$^{\circ}$K. Values
in parentheses are the $\Delta H_f$ for the radicals, 298$^{\circ}$K.}
\label{chap7-tab2}
\begin{tabular}{ccccc}\\ \hline
& CH$_3$ & CH$_2$Me & CHMe$_2$ & CMe$_3$\cr
CH$_3$ (+34.84) & 89.9 & 85.7 & 85 & 82.5\cr
CH$_2$Me (+26) & & 82 & 81\cr
CHMe$_2$ (+18) & & & 78.5 & 75\cr
CMe$_3$ (+8) & & & & 70\cr
\hline
\end{tabular}
\end{table}
First consider single bonds. In Table \ref{chap7-tab2}, we show the
strengths of a CC single bond for various cases. The values vary from
$D(\chem{H_3C-CH_3}) = 89.9$ kcal to $D(\chem{Me_3C-CMe_3}) = 70$
kcal. There are three plausible explanations for these variations,
they are:
\begin{enumerate}
\item Inductive effects. A change in the character of
the C-C bond orbital due to replacement of an H ligand by the Me;
\item Fragment relaxation effects. Because of the larger size
of Me as compared to H, there will be larger ligand-ligand interactions
and hence, a bigger relaxation energy in the fragment upon relaxing
from tetrahedral to planar geometries. amd
\item Ligand-CC pair-pair repulsion. Each H to Me substitution
leads to two additional CH bonds that are gauche to the original CC
bond. These additional CH interactions weaken this CC bond. For
example, in C$_2$H$_6$ there are six interactions between gauche
CH pairs on opposite carbons, as indicated in (\ref{chap7-eqno49}(b)).
Breaking the CC bond eliminates these six bad interactions.
With an Me substituent, there are additional repulsive interactions.
\begin{equation}
\includegraphics{fg7-10a}
\label{chap7-eqno49}
\end{equation}
The C$_2$C$_3-$C$_1$H$_1$ and C$_2$C$_3-$C$_2$H$_2$ interactions are
removed as the C$_2$C$_3$ bond is broken, thereby leading to a
decreased bond energy. Including such effects, one would expect
linear changes in each horizontal and vertical step of Table
\ref{chap7-tab2}, a result that is approximately true.
\end{enumerate}
It is not known which of the effects (i) to (iii) dominate.
\begin{table}
\caption{Bond energies for CC double bonds, kcal/mole at 298$^{\circ}$K.}
\label{chap7-tab3}
\begin{tabular}{cccc}\\ \hline
& CH$_2$ & CHMe & CMe$_2$\cr
CH$_2$ (92.4) & 172.3 & 168.5 & 167.4\cr
CHMe (81) & & 164 & 162\cr
CMe$_2$ (71) & & & 1.59\cr
\hline
\end{tabular}
\end{table}
\begin{table}
\caption{Comparison of energy quantities for substituted alkenes.}
\label{chap7-tab4}
\begin{tabular}{ccccccccc}\\ \hline
&&& &\multicolumn{3}{c}{Ground State}&$N$ to $T$ & $N$ to $V$\cr
&&& & Bond Energy & Bond Length & Rotation Barrier &
\multicolumn{2}{c}{Separation}\cr
&&& & (kcal/mol) & (\AA) & (kcal/mol) & (eV) & (eV)\cr
&&& & 172.3 & 1.339 & 65 & 4.32 & 7.6\cr
&&& & 168.5 & 1.336 & & 4.28 & 7.17\cr
&&& & 163 & & 63-65 & 4.21 & 7.10\cr
&&& && 164 & & 4.24 & 6.95\cr
&&& && 167.4 & & 4.22 & 6.6-6.7\cr
&&& && 162 & & 4.16 & 6.8-7.0\cr
&&& && 159 & & 4.10 & 6.57\cr
\hline
\end{tabular}
\end{table}
Now let us consider multiple bonds. Substituting the H's of ethylene
with various saturated groups leads to alkenes with an electron
structure qualitatively similar to ethylene. In general, the bonding
and antibonding orbitals are denoted as $\pi$ and $\pi*$,
respectively, rather than $\pi_u$ and $\pi_g$, but the notation $N$,
$T$, and $V$ is still used. The trend in bond energies for various
simple alkenes, is given in Table \ref{chap7-tab3}, while other
properties are tabulated in Table \ref{chap7-tab4}.
\begin{table}
\caption{Bond energies for CC triplet bonds, kcal/mol at 298$^{\circ}$K.}
\label{chap7-tab5}
\begin{tabular}{ccc}\\ \hline
& CH & CMe\cr
CH (142.0) & 229.8 & 228\cr
CMe (130) & & 225\cr
\hline
\end{tabular}
\end{table}
\begin{table}
\caption{CC bond energies, kcal/mole. This is based on the simple
correation, and ignores vibrational contributions to
$D_{298^{\circ}{\rm K}} = D_{0^{\circ}{\rm K}}$.}
\label{chap7-tab6}
\begin{tabular}{ccccccc}\\ \hline
&\multicolumn{4}{c}{CC Bond Energy}&\multicolumn{2}{c}{Incremental $D_e$}\cr
&\multicolumn{3}{c}{Adiabatic}&Snap&Adiabatic&Snap\cr
&$D_{298{\rm K}}$ & $D_{0{\rm K}}$ & $D_e$$^a$ & $D_e$\cr
\noalign{\medskip\hrule\medskip}
H$_3$C$-$CH$_3$ & 89.9 & 87.5 & 95.0 & 109.6$^b$ & 95 & 110\cr
H$_2$C=CH$_2$ & 172.3 & 169.9 & 180.0 & 184.7$^c$ & 85 & 75\cr
H$_2$C$-$CH$_2$$^f$ & [107.3]$^d$ & [105.2] & [113.0] & [117.7]\cr
HC$\equiv$CH & 229.8 & 227.7 & 235.7 & 269.7$^e$ & 56 & 85\cr
\hline
\end{tabular}\\
$^a$Using $V_0$ from Table 7-1.
$^b$Using 7.3 kcal for the relaxation energy of CH$_3$.
$^c$Using 4.7 kcal for the relaxation energy of CH$_2$.
$^d$Assuming a rotational barrier of 65 kcal for ethylene at
298$^{\circ}$K.
$^e$Using 17 kcal for the electronic excitation energy from
${^2\Pi}$ to ${^4\Sigma}^-$.
$^f$Twisted.
\end{table}
Substituting the H's of acetylene with various saturated groups leads to
other alkynes, whose trends in bond energy are given in Table
\ref{chap7-tab5}.
Secondly, let us consider comparison of CC bonds. From Table
\ref{chap7-tab6} the adiabatic $D_e$ for C-C, C=C, and C$\equiv$C
bonds are 95, 180, and 236 kcal, respectively. Thus, the $\pi$ bond of
ethylene is 85 kcal stronger than the $\sigma$ bond of ethane, and the
second $\pi$ bond of acetylene leads to an increase of 56 kcal in bond
energy over that of ethylene.
From the wavefunctions, there is no obvious reason why the two $\pi$
bonds of acetylene are proportionally weaker than the $\pi$ bond of
ethylene. Indeed, considering that ethylene has eclipsed CH bonds
we might believe that the $\pi$ bond in ethylene would be weaker. These
views are strengthened by a comparison of the bond snap energies which
are 110 kcal for C-C, 185 kcal for C=C, and 270 kcal for
C$\equiv$C. In terms of bond snap energies the $\pi$ bond of ethylene
is 75 kcal, while the total $\pi$ bonding of acetylene is 160 kcal or
80 kcal apiece. The reason why the adiabatic bond energy is so weak,
is that each CH fragment must be promoted, at a cost of 17 kcal each,
to the ${^4\Sigma}^-$ state
\begin{equation}
\includegraphics{fg7-10b}
\end{equation}
in order to make two $\pi$ bonds. Perhaps the reason why the $\pi$ bond
snap energy of ethylene is 5 kcal weaker than the average $\pi$ bond
snap in acetylene, is the eclipsing of the CH bonds.
Experimentally the activation energy for cis-trans isomerization
in ethylene is 65 kcal. Since the CC bond energy of ethylene is 172
kcal, this indicates that the CC bond energy of
\begin{equation}
\includegraphics{fg7-10c}
\label{chap7-eqno51}
\end{equation}
is $D_{298} =$ 107 kcal, leading to a bond snap energy of 118 kcal. The
difference between this value and the 110 kcal bond snap of ethane,
I interpret as mainly due to the reduction of the pair-pair repulsions
for CH bonds on opposing carbons, in ethane.
The CC bond distance for twisted ethylene is 1.50 \AA. Assuming the
C-H repulsions are negligible in twisted ethylene, this could be
considered as the intrinsic length for a CC $\sigma$ bond with the
additional 0.03 \AA\ in ethane due to nonbonded repulsion of the
CH bonds.
Some other properties of these systems are tabulated in Table
\ref{chap7-tab6}. Note that the CC vibrational frequency increases
from 995, to 1623, to 1974 cm$^{-1}$ for single, double and triple
bonds. There are also systematic changes in the CH vibrational
frequencies, cm$^{-1}$: 2960 for H$_3$CCH$_3$, and 2994 for CH$_4$;
3056 for H$_2$C=CH$_2$, 3080 for CH$_2$, and 3123 for CH$_3$; and,
3332 for HC$\equiv$CH.
\section{Resonance}
\subsection{Benzene}
Methyl radical is planar with 120$^{\circ}$ bond angles, and
ethylene is planar with similar bond angles. Thus, it is plausible
that a cyclic C$_6$H$_6$ molecule would be planar with 120$^{\circ}$
bond angles
\begin{equation}
\includegraphics{fg7-10d}
\label{chap7-eqno52}
\end{equation}
The question is how to pair the six $\pi$ orbitals of
(\ref{chap7-eqno52}). There are two obvious cases, known as the
kekule structures
\begin{equation}
\includegraphics{fg7-10e}
\label{chap7-eqno53}
\end{equation}
with corresponding wavefunctions ($\pi$ system only)
\begin{eqnarray}
\psi_{2a} &=& A \left[ \left( \phi_a \phi_b + \phi_b \phi_a \right)
\left( \phi_c \phi_d + \phi_d \phi_c \right) \left( \phi_e \phi_f +
\phi_f \phi_e \right) \alpha \beta \alpha \beta \alpha \beta
\right]\cr
&=& A \left[ \phi_a \phi_b \phi_c \phi_d \phi_e \phi_f \chi_{2a}
\right]
\end{eqnarray}
where
\begin{equation}
\chi_{2a} = \left( \alpha \beta - \beta \alpha \right) \left( \alpha
\beta - \beta \alpha \right) \left( \alpha \beta - \beta \alpha \right)
\end{equation}
and
\begin{eqnarray}
\psi_{2b} &=& A \left[ \left( \phi_b \phi_c + \phi_c \phi_b \right)
\left( \phi_d \phi_e + \phi_e \phi_d \right) \left( \phi_f \phi_a +
\phi_a \phi_f \right) \alpha \beta \alpha \beta \alpha \beta \right]\cr
&=& A \left[ \phi_b \phi_c \phi_d \phi_e \phi_f \phi_a \left( \alpha
\beta - \beta \alpha \right) \left( \alpha \beta - \beta \alpha
\right) \left( \alpha \beta - \beta \alpha \right) \right]\cr
&=& A \left[ \phi_a \phi_b \phi_c \phi_d \phi_e \phi_f \chi_{2b}
\right]
\end{eqnarray}
where
\begin{equation}
\chi_{2b} = \beta \left( \alpha \beta - \beta \alpha \right) \left(
\alpha \beta - \beta \alpha \right) \alpha - \alpha \left( \alpha
\beta - \beta \alpha \right) \left( \alpha \beta - \beta \alpha
\right) \beta.
\end{equation}
Superimposing these wavefunctions leads to a new wavefunction
\begin{equation}
\chi_3 = A \left[ \phi_a \phi_b \phi_c \phi_d \phi_e \phi_f \chi_3
\right]
\end{equation}
where $\chi_e = \chi_{2a} + \chi_{2b}$,
which corresponds to a superposition of the bonding structures
in (\ref{chap7-eqno53}). In $\chi_3$, all six bonds are equivalent, and we write
\begin{equation}
\includegraphics{fg7-10f}
\label{chap7-eqno54}
\end{equation}
Calculations show that the superposition wavefunction $\chi_3$ is 20 kcal
lower in energy than either $\chi_{2a}$ or $\chi_{2b}$, using the same
geometry. This stabilization due to superposition of equivalent bonding
configurations is referred to as resonance.
In thermonuclear calculations, it is necessary to assume that
benzene is about 30 to 36 kcal more stable than a kekule line structure.
\subsection{Allyl Radical}
Removing an H from the methyl group of propane
\begin{equation}
% missing figure from p 7-38
%\includegraphics{fg7-}
\end{equation}
leads to allyl radical, a planar molecule with two equivalent
bonding structures
\begin{equation}
% missing figure from p 7-39
%\includegraphics{fg7-}
\label{chap7-eqno55}