-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathpreprocess_downsample.cc
477 lines (423 loc) · 14.9 KB
/
preprocess_downsample.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
/*
* Copyright 2016 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "preprocess_downsample.h"
#include <assert.h>
#include <string.h>
#include <cmath>
using std::size_t;
namespace {
// convolve with size*size kernel
std::vector<float> Convolve2D(const std::vector<float>& image, int w, int h,
const double* kernel, int size) {
auto result = image;
int size2 = size / 2;
for (int i = 0; i < image.size(); i++) {
int x = i % w;
int y = i / w;
// Avoid non-normalized results at boundary by skipping edges.
if (x < size2 || x + size - size2 - 1 >= w
|| y < size2 || y + size - size2 - 1 >= h) {
continue;
}
float v = 0;
for (int j = 0; j < size * size; j++) {
int x2 = x + j % size - size2;
int y2 = y + j / size - size2;
v += kernel[j] * image[y2 * w + x2];
}
result[i] = v;
}
return result;
}
// convolve horizontally and vertically with 1D kernel
std::vector<float> Convolve2X(const std::vector<float>& image, int w, int h,
const double* kernel, int size, double mul) {
auto temp = image;
int size2 = size / 2;
for (int i = 0; i < image.size(); i++) {
int x = i % w;
int y = i / w;
// Avoid non-normalized results at boundary by skipping edges.
if (x < size2 || x + size - size2 - 1 >= w) continue;
float v = 0;
for (int j = 0; j < size; j++) {
int x2 = x + j - size2;
v += kernel[j] * image[y * w + x2];
}
temp[i] = v * mul;
}
auto result = temp;
for (int i = 0; i < temp.size(); i++) {
int x = i % w;
int y = i / w;
// Avoid non-normalized results at boundary by skipping edges.
if (y < size2 || y + size - size2 - 1 >= h) continue;
float v = 0;
for (int j = 0; j < size; j++) {
int y2 = y + j - size2;
v += kernel[j] * temp[y2 * w + x];
}
result[i] = v * mul;
}
return result;
}
double Normal(double x, double sigma) {
static const double kInvSqrt2Pi = 0.3989422804014327;
return std::exp(-x * x / (2 * sigma * sigma)) * kInvSqrt2Pi / sigma;
}
std::vector<float> Sharpen(const std::vector<float>& image, int w, int h,
float sigma, float amount) {
// This is only made for small sigma, e.g. 1.3.
std::vector<double> kernel(5);
for (int i = 0; i < kernel.size(); i++) {
kernel[i] = Normal(1.0 * i - kernel.size() / 2, sigma);
}
double sum = 0;
for (int i = 0; i < kernel.size(); i++) sum += kernel[i];
const double mul = 1.0 / sum;
std::vector<float> result =
Convolve2X(image, w, h, kernel.data(), kernel.size(), mul);
for (size_t i = 0; i < image.size(); i++) {
result[i] = image[i] + (image[i] - result[i]) * amount;
}
return result;
}
void Erode(int w, int h, std::vector<bool>* image) {
std::vector<bool> temp = *image;
for (int y = 1; y + 1 < h; y++) {
for (int x = 1; x + 1 < w; x++) {
size_t index = y * w + x;
if (!(temp[index] && temp[index - 1] && temp[index + 1]
&& temp[index - w] && temp[index + w])) {
(*image)[index] = 0;
}
}
}
}
void Dilate(int w, int h, std::vector<bool>* image) {
std::vector<bool> temp = *image;
for (int y = 1; y + 1 < h; y++) {
for (int x = 1; x + 1 < w; x++) {
size_t index = y * w + x;
if (temp[index] || temp[index - 1] || temp[index + 1]
|| temp[index - w] || temp[index + w]) {
(*image)[index] = 1;
}
}
}
}
std::vector<float> Blur(const std::vector<float>& image, int w, int h) {
// This is only made for small sigma, e.g. 1.3.
static const double kSigma = 1.3;
std::vector<double> kernel(5);
for (int i = 0; i < kernel.size(); i++) {
kernel[i] = Normal(1.0 * i - kernel.size() / 2, kSigma);
}
double sum = 0;
for (int i = 0; i < kernel.size(); i++) sum += kernel[i];
const double mul = 1.0 / sum;
return Convolve2X(image, w, h, kernel.data(), kernel.size(), mul);
}
} // namespace
namespace knusperli {
// Do the sharpening to the v channel, but only in areas where it will help
// channel should be 2 for v sharpening, or 1 for less effective u sharpening
std::vector<std::vector<float>> PreProcessChannel(
int w, int h, int channel, float sigma, float amount, bool blur,
bool sharpen, const std::vector<std::vector<float>>& image) {
if (!blur && !sharpen) return image;
// Bring in range 0.0-1.0 for Y, -0.5 - 0.5 for U and V
auto yuv = image;
for (int i = 0; i < yuv[0].size(); i++) {
yuv[0][i] /= 255.0;
yuv[1][i] = yuv[1][i] / 255.0 - 0.5;
yuv[2][i] = yuv[2][i] / 255.0 - 0.5;
}
// Map of areas where the image is not too bright to apply the effect.
std::vector<bool> darkmap(image[0].size(), false);
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
size_t index = y * w + x;
float y = yuv[0][index];
float u = yuv[1][index];
float v = yuv[2][index];
float r = y + 1.402 * v;
float g = y - 0.34414 * u - 0.71414 * v;
float b = y + 1.772 * u;
// Parameters tuned to avoid sharpening in too bright areas, where the
// effect makes it worse instead of better.
if (channel == 2 && g < 0.85 && b < 0.85 && r < 0.9) {
darkmap[index] = true;
}
if (channel == 1 && r < 0.85 && g < 0.85 && b < 0.9) {
darkmap[index] = true;
}
}
}
Erode(w, h, &darkmap);
Erode(w, h, &darkmap);
Erode(w, h, &darkmap);
// Map of areas where the image is red enough (blue in case of u channel).
std::vector<bool> redmap(image[0].size(), false);
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
size_t index = y * w + x;
float u = yuv[1][index];
float v = yuv[2][index];
// Parameters tuned to allow only colors on which sharpening is useful.
if (channel == 2 && 2.116 * v > -0.34414 * u + 0.2
&& 1.402 * v > 1.772 * u + 0.2) {
redmap[index] = true;
}
if (channel == 1 && v < 1.263 * u - 0.1 && u > -0.33741 * v) {
redmap[index] = true;
}
}
}
Dilate(w, h, &redmap);
Dilate(w, h, &redmap);
Dilate(w, h, &redmap);
// Map of areas where to allow sharpening by combining red and dark areas
std::vector<bool> sharpenmap(image[0].size(), 0);
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
size_t index = y * w + x;
sharpenmap[index] = redmap[index] && darkmap[index];
}
}
// Threshold for where considered an edge.
const double threshold = (channel == 2 ? 0.02 : 1.0) * 127.5;
static const double kEdgeMatrix[9] = {
0, -1, 0,
-1, 4, -1,
0, -1, 0
};
// Map of areas where to allow blurring, only where it is not too sharp
std::vector<bool> blurmap(image[0].size(), false);
std::vector<float> edge = Convolve2D(yuv[channel], w, h, kEdgeMatrix, 3);
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
size_t index = y * w + x;
float u = yuv[1][index];
float v = yuv[2][index];
if (sharpenmap[index]) continue;
if (!darkmap[index]) continue;
if (fabs(edge[index]) < threshold && v < -0.162 * u) {
blurmap[index] = true;
}
}
}
Erode(w, h, &blurmap);
Erode(w, h, &blurmap);
// Choose sharpened, blurred or original per pixel
std::vector<float> sharpened = Sharpen(yuv[channel], w, h, sigma, amount);
std::vector<float> blurred = Blur(yuv[channel], w, h);
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
size_t index = y * w + x;
if (sharpenmap[index] > 0) {
if (sharpen) yuv[channel][index] = sharpened[index];
} else if (blurmap[index] > 0) {
if (blur) yuv[channel][index] = blurred[index];
}
}
}
// Bring back to range 0-255
for (int i = 0; i < yuv[0].size(); i++) {
yuv[0][i] *= 255.0;
yuv[1][i] = (yuv[1][i] + 0.5) * 255.0;
yuv[2][i] = (yuv[2][i] + 0.5) * 255.0;
}
return yuv;
}
namespace {
inline float Clip(float val) {
return std::max(0.0f, std::min(255.0f, val));
}
inline float RGBToY(float r, float g, float b) {
return 0.299f * r + 0.587f * g + 0.114f * b;
}
inline float RGBToU(float r, float g, float b) {
return -0.16874f * r - 0.33126f * g + 0.5f * b + 128.0;
}
inline float RGBToV(float r, float g, float b) {
return 0.5f * r - 0.41869f * g - 0.08131f * b + 128.0;
}
inline float YUVToR(float y, float u, float v) {
return y + 1.402 * (v - 128.0);
}
inline float YUVToG(float y, float u, float v) {
return y - 0.344136 * (u - 128.0) - 0.714136 * (v - 128.0);
}
inline float YUVToB(float y, float u, float v) {
return y + 1.772 * (u - 128.0);
}
// TODO Use SRGB->linear conversion and a lookup-table.
inline float GammaToLinear(float x) {
return std::pow(x / 255.0, 2.2);
}
// TODO Use linear->SRGB conversion and a lookup-table.
inline float LinearToGamma(float x) {
return 255.0 * std::pow(x, 1.0 / 2.2);
}
std::vector<float> LinearlyAveragedLuma(const std::vector<float>& rgb) {
assert(rgb.size() % 3 == 0);
std::vector<float> y(rgb.size() / 3);
for (int i = 0, p = 0; p < rgb.size(); ++i, p += 3) {
y[i] = LinearToGamma(RGBToY(GammaToLinear(rgb[p + 0]),
GammaToLinear(rgb[p + 1]),
GammaToLinear(rgb[p + 2])));
}
return y;
}
std::vector<float> LinearlyDownsample2x2(const std::vector<float>& rgb_in,
const int width, const int height) {
assert(rgb_in.size() == 3 * width * height);
int w = (width + 1) / 2;
int h = (height + 1) / 2;
std::vector<float> rgb_out(3 * w * h);
for (int y = 0, p = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
for (int i = 0; i < 3; ++i, ++p) {
rgb_out[p] = 0.0;
for (int iy = 0; iy < 2; ++iy) {
for (int ix = 0; ix < 2; ++ix) {
int yy = std::min(height - 1, 2 * y + iy);
int xx = std::min(width - 1, 2 * x + ix);
rgb_out[p] += GammaToLinear(rgb_in[3 * (yy * width + xx) + i]);
}
}
rgb_out[p] = LinearToGamma(0.25 * rgb_out[p]);
}
}
}
return rgb_out;
}
std::vector<std::vector<float> > RGBToYUV(const std::vector<float>& rgb) {
std::vector<std::vector<float> > yuv(3, std::vector<float>(rgb.size() / 3));
for (int i = 0, p = 0; p < rgb.size(); ++i, p += 3) {
const float r = rgb[p + 0];
const float g = rgb[p + 1];
const float b = rgb[p + 2];
yuv[0][i] = RGBToY(r, g, b);
yuv[1][i] = RGBToU(r, g, b);
yuv[2][i] = RGBToV(r, g, b);
}
return yuv;
}
std::vector<float> YUVToRGB(const std::vector<std::vector<float> >& yuv) {
std::vector<float> rgb(3 * yuv[0].size());
for (int i = 0, p = 0; p < rgb.size(); ++i, p += 3) {
const float y = yuv[0][i];
const float u = yuv[1][i];
const float v = yuv[2][i];
rgb[p + 0] = Clip(YUVToR(y, u, v));
rgb[p + 1] = Clip(YUVToG(y, u, v));
rgb[p + 2] = Clip(YUVToB(y, u, v));
}
return rgb;
}
// Upsamples img_in with a box-filter, and returns an image with output
// dimensions width x height.
std::vector<float> Upsample2x2(const std::vector<float>& img_in,
const int width, const int height) {
int w = (width + 1) / 2;
int h = (height + 1) / 2;
assert(img_in.size() == w * h);
std::vector<float> img_out(width * height);
for (int y = 0, p = 0; y < h; ++y) {
for (int x = 0; x < w; ++x, ++p) {
for (int iy = 0; iy < 2; ++iy) {
for (int ix = 0; ix < 2; ++ix) {
int yy = std::min(height - 1, 2 * y + iy);
int xx = std::min(width - 1, 2 * x + ix);
img_out[yy * width + xx] = img_in[p];
}
}
}
}
return img_out;
}
// Apply the "fancy upsample" filter used by libjpeg.
std::vector<float> Blur(const std::vector<float>& img,
const int width, const int height) {
std::vector<float> img_out(width * height);
for (int y0 = 0; y0 < height; y0 += 2) {
for (int x0 = 0; x0 < width; x0 += 2) {
for (int iy = 0; iy < 2 && y0 + iy < height; ++iy) {
for (int ix = 0; ix < 2 && x0 + ix < width; ++ix) {
int dy = 4 * iy - 2;
int dx = 4 * ix - 2;
int x1 = std::min(width - 1, std::max(0, x0 + dx));
int y1 = std::min(height - 1, std::max(0, y0 + dy));
img_out[(y0 + iy) * width + x0 + ix] =
(9.0 * img[y0 * width + x0] +
3.0 * img[y0 * width + x1] +
3.0 * img[y1 * width + x0] +
1.0 * img[y1 * width + x1]) / 16.0;
}
}
}
}
return img_out;
}
std::vector<float> YUV420ToRGB(const std::vector<std::vector<float> >& yuv420,
const int width, const int height) {
std::vector<std::vector<float> > yuv;
yuv.push_back(yuv420[0]);
std::vector<float> u = Upsample2x2(yuv420[1], width, height);
std::vector<float> v = Upsample2x2(yuv420[2], width, height);
yuv.push_back(Blur(u, width, height));
yuv.push_back(Blur(v, width, height));
return YUVToRGB(yuv);
}
void UpdateGuess(const std::vector<float>& target,
const std::vector<float>& reconstructed,
std::vector<float>* guess) {
assert(reconstructed.size() == guess->size());
assert(target.size() == guess->size());
for (int i = 0; i < guess->size(); ++i) {
// TODO: Evaluate using a decaying constant here.
(*guess)[i] = Clip((*guess)[i] - (reconstructed[i] - target[i]));
}
}
} // namespace
std::vector<std::vector<float> > RGBToYUV420(
const std::vector<uint8_t>& rgb_in, const int width, const int height) {
std::vector<float> rgbf(rgb_in.size());
for (int i = 0; i < rgb_in.size(); ++i) {
rgbf[i] = static_cast<float>(rgb_in[i]);
}
std::vector<float> y_target = LinearlyAveragedLuma(rgbf);
std::vector<std::vector<float> > yuv_target =
RGBToYUV(LinearlyDownsample2x2(rgbf, width, height));
std::vector<std::vector<float> > yuv_guess = yuv_target;
yuv_guess[0] = Upsample2x2(yuv_guess[0], width, height);
// TODO: Stop early if the error is small enough.
for (int iter = 0; iter < 20; ++iter) {
std::vector<float> rgb_rec = YUV420ToRGB(yuv_guess, width, height);
std::vector<float> y_rec = LinearlyAveragedLuma(rgb_rec);
std::vector<std::vector<float> > yuv_rec =
RGBToYUV(LinearlyDownsample2x2(rgb_rec, width, height));
UpdateGuess(y_target, y_rec, &yuv_guess[0]);
UpdateGuess(yuv_target[1], yuv_rec[1], &yuv_guess[1]);
UpdateGuess(yuv_target[2], yuv_rec[2], &yuv_guess[2]);
}
yuv_guess[1] = Upsample2x2(yuv_guess[1], width, height);
yuv_guess[2] = Upsample2x2(yuv_guess[2], width, height);
return yuv_guess;
}
} // namespace knusperli