-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathexample_mnist_ae.py
147 lines (121 loc) · 3.89 KB
/
example_mnist_ae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright 2019 Google LLC
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""uses po2."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from collections import defaultdict
import tensorflow.keras.backend as K
from tensorflow.keras.datasets import mnist
from tensorflow.keras.layers import Activation
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.utils import to_categorical
from qkeras import *
from qkeras.utils import model_save_quantized_weights
import numpy as np
import tensorflow.compat.v1 as tf
np.random.seed(42)
NB_EPOCH = 100
BATCH_SIZE = 64
VERBOSE = 1
NB_CLASSES = 10
OPTIMIZER = Adam(lr=0.0001, decay=0.000025)
VALIDATION_SPLIT = 0.1
train = 1
(x_train, y_train), (x_test, y_test) = mnist.load_data()
RESHAPED = 784
x_train = x_train.astype("float32")
x_test = x_test.astype("float32")
x_train = x_train[..., np.newaxis]
x_test = x_test[..., np.newaxis]
x_train /= 256.0
x_test /= 256.0
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")
print(y_train[0:10])
y_train = to_categorical(y_train, NB_CLASSES)
y_test = to_categorical(y_test, NB_CLASSES)
x = x_in = Input(
x_train.shape[1:-1] + (1,))
x = QConv2D(
32,
kernel_size=(3, 3),
kernel_quantizer=quantized_bits(4,0,1),
bias_quantizer=quantized_bits(4,0,1))(x)
x = QActivation("quantized_relu(4,0)")(x)
x = QConv2D(
16,
kernel_size=(3, 3),
kernel_quantizer=quantized_bits(4,0,1),
bias_quantizer=quantized_bits(4,0,1))(x)
x = QActivation("quantized_relu(4,0)")(x)
x = QConv2D(
8,
kernel_size=(3, 3),
kernel_quantizer=quantized_bits(4,0,1),
bias_quantizer=quantized_bits(4,0,1))(x)
x = QActivation("quantized_relu(4,0)")(x)
x = QConv2DTranspose(
8,
kernel_size=(3, 3),
kernel_quantizer=quantized_bits(4,0,1),
bias_quantizer=quantized_bits(4,0,1))(x)
x = QActivation("quantized_relu(4,0)")(x)
x = QConv2DTranspose(
16,
kernel_size=(3, 3),
kernel_quantizer=quantized_bits(4,0,1),
bias_quantizer=quantized_bits(4,0,1))(x)
x = QActivation("quantized_relu(4,0)")(x)
x = QConv2DTranspose(
32,
kernel_size=(3, 3),
kernel_quantizer=quantized_bits(4,0,1),
bias_quantizer=quantized_bits(4,0,1))(x)
x = QActivation("quantized_relu(4,0)")(x)
x = QConv2D(
1,
kernel_size=(3, 3),
padding="same",
kernel_quantizer=quantized_bits(4,0,1),
bias_quantizer=quantized_bits(4,0,1))(x)
x_out = x
x = Activation("sigmoid")(x)
model = Model(inputs=[x_in], outputs=[x])
mo = Model(inputs=[x_in], outputs=[x_out])
model.summary()
model.compile(
loss="binary_crossentropy", optimizer=OPTIMIZER, metrics=["accuracy"])
if train:
history = model.fit(
x_train, x_train, batch_size=BATCH_SIZE,
epochs=NB_EPOCH, initial_epoch=1, verbose=VERBOSE,
validation_split=VALIDATION_SPLIT)
# Generate reconstructions
num_reco = 8
samples = x_test[:num_reco]
targets = y_test[:num_reco]
reconstructions = model.predict(samples)
for layer in model.layers:
for w, weight in enumerate(layer.get_weights()):
print(layer.name, w, weight.shape)
print_qstats(model)