-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_main_local.py
56 lines (45 loc) · 1.7 KB
/
train_main_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A training framework using distributed strategy."""
import os
from absl import app
from absl import flags
import gin.tf
import train_eval_lib_local
flags.DEFINE_enum('mode', None, ['cpu', 'gpu'],
'Distributed strategy approach.')
flags.DEFINE_string('base_folder', None, 'Path to checkpoints/summaries.')
flags.DEFINE_multi_string('gin_bindings', None, 'Gin parameter bindings.')
flags.DEFINE_multi_string('gin_configs', None, 'Gin config files.')
FLAGS = flags.FLAGS
def main(argv):
del argv # Unused.
gin.parse_config_files_and_bindings(
config_files=FLAGS.gin_configs,
bindings=FLAGS.gin_bindings,
skip_unknown=True)
base_folder = FLAGS.base_folder
base_folder = os.path.join(base_folder, 'train')
train_eval_lib_local.train_pipeline(
training_mode=FLAGS.mode,
base_folder=base_folder,
dataset_params=gin.REQUIRED,
lr_params=gin.REQUIRED,
batch_size=gin.REQUIRED,
n_iterations=gin.REQUIRED)
if __name__ == '__main__':
flags.mark_flag_as_required('mode')
flags.mark_flag_as_required('base_folder')
flags.mark_flag_as_required('gin_configs')
app.run(main)