-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
81 lines (66 loc) · 2.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import streamlit as st
from astra.cassandra_helper import astraSession, create_vector_db_with_cassandra
from dotenv import load_dotenv
import os
import json # Import json for reading the user_roles.json file
from llm.llm_helper import get_response_from_query, response_text
import openai
import time
import tiktoken
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
# Other imports remain the same
def token_count(text):
return len(encoding.encode(text))
load_dotenv()
session = astraSession
openai.api_key = os.getenv("OPENAI_API_KEY")
# Read user roles from the JSON file
with open('llm/user_roles.json') as file:
user_roles = json.load(file)
# Create the UI
st.set_page_config(page_title="Llama Index Helper", layout="wide")
st.title("Smart Chunking Demo: Llama Index Helper")
with st.sidebar:
st.header("Llama Index Helper Options")
# User role selector
user_role = st.selectbox(
"Select your role",
options=['Choose one...'] + list(user_roles.keys()),
index=0 # Default to 'Choose one...'
)
# Only show other options if a valid user role is selected
if user_role != 'Choose one...':
enable_smart_chunking = st.checkbox("Enable Smart Chunking")
user_input = st.text_area(
"Enter your query here",
height=300
)
k = st.number_input(
"k",
help="Number of documents to fetch from the database",
min_value=1,
max_value=300,
value=60,
step=1
)
if st.button("Generate Response"):
start_time = time.time()
llm_response, docs = get_response_from_query(user_input, k, user_role, enable_smart_chunking)
response_text = response_text.join(llm_response)
total_tokens = sum(token_count(doc) for doc in docs)
# End timer
end_time = time.time()
generation_time = end_time - start_time
st.write(f"Generation Time: {generation_time:.2f} seconds")
st.write(f"Total Context Token Count: {total_tokens}")
if st.button("Rebuild Database"):
keyspace = create_vector_db_with_cassandra(
folder_path="./data",
astraSession=astraSession,
enable_smart_chunking=enable_smart_chunking
)
st.text("Database rebuilt!")
# Display the generated response in the main page
if response_text:
st.subheader("Response")
st.write(response_text)