-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
88 lines (72 loc) · 2.76 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#!/usr/bin/env python
"""Code for "Actor and Observer: Joint Modeling of First and Third-Person Videos", CVPR 2018
Can be run directly or throught config scripts under exp/
Gunnar Sigurdsson, 2018
"""
import torch
import numpy as np
import random
import train
import tasks
import pdb
from models import create_model
from models.ActorObserverFirstPerson import ActorObserverFirstPerson
from datasets.get import get_dataset
from datasets.charadesegoalignment import get as get_alignment
# from datasets.charadesegousersalignment import get as get_usersalignment
import checkpoints
from opts import parse
from utils import tee
def seed(manualseed):
random.seed(manualseed)
np.random.seed(manualseed)
torch.manual_seed(manualseed)
torch.cuda.manual_seed(manualseed)
best_top1 = 0
def validate(trainer, loaders, model, criterion, args, epoch=-1):
_, val_loader, valvideo_loader = loaders[:3]
scores = {}
if args.valvideoego:
scores.update(trainer.validate_egovideo(
loaders[3], ActorObserverFirstPerson(model), epoch, args))
if args.alignment:
alignment_loader = get_alignment(args)
scores['alignment'] = tasks.alignment(alignment_loader, model, epoch, args)
if args.usersalignment:
alignment_loader = get_usersalignment(args)
scores['usersalignment'] = tasks.alignment(alignment_loader, model, epoch, args)
if args.valvideo:
scores.update(trainer.validate_video(valvideo_loader, model, epoch, args))
scores.update(trainer.validate(val_loader, model, criterion, epoch, args))
return scores
def main():
global args, best_top1
args = parse()
if not args.no_logger:
tee.Tee(args.cache + '/log.txt')
print(vars(args))
seed(args.manual_seed)
model, criterion, optimizer = create_model(args)
if args.resume:
best_top1 = checkpoints.load(args, model, optimizer)
print(model)
trainer = train.Trainer()
loaders = get_dataset(args)
train_loader = loaders[0]
if args.evaluate:
scores = validate(trainer, loaders, model, criterion, args)
checkpoints.score_file(scores, "{}/model_000.txt".format(args.cache))
return
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
trainer.train_sampler.set_epoch(epoch)
scores = {}
scores.update(trainer.train(train_loader, model, criterion, optimizer, epoch, args))
scores.update(validate(trainer, loaders, model, criterion, args, epoch))
is_best = scores[args.metric] > best_top1
best_top1 = max(scores[args.metric], best_top1)
checkpoints.save(epoch, args, model, optimizer, is_best, scores, args.metric)
if not args.nopdb:
pdb.set_trace()
if __name__ == '__main__':
main()