-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
125 lines (100 loc) · 5.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf
import numpy as np
# import tensorflow.contrib.slim.nets as nets
import nets.resnet_v2 as resnet_v2
import nets.inception as inception
import math
from tensorflow.contrib.slim.python.slim.data import dataset
from tensorflow.contrib.slim.python.slim.data import dataset_data_provider
from datasets import cifar10
from datasets import download_and_convert_cifar10
import adamb_data_loader
slim = tf.contrib.slim
# Limits to only one GPU:
os.environ["CUDA_VISIBLE_DEVICES"]="1"
tf.app.flags.DEFINE_boolean('debug', False, 'Produces debugging output.')
tf.app.flags.DEFINE_string('dataset_dir', '/tmp/dataset', 'Directory where checkpoints are.')
tf.app.flags.DEFINE_string('method', 'singleton', 'technique for constructing the minibatch.')
tf.app.flags.DEFINE_string('dataset_name', 'cifar10', 'name of the dataset.')
tf.app.flags.DEFINE_integer('batch_size', 32, 'The number of images in each eval branch.')
tf.app.flags.DEFINE_float('learning_rate', 0.01, 'The step size of gradient descent.')
tf.app.flags.DEFINE_string('checkpoint_dir', '/ada_mb/run_data', 'Directory where checkpoints are.')
tf.app.flags.DEFINE_string('log_dir', '/ada_mb/run_data', 'Directory where logs are .')
tf.app.flags.DEFINE_string('model', 'resnet', 'model name.')
tf.app.flags.DEFINE_string('master', '', 'The BNS address of the TensorFlow master, empty for nonborg.')
tf.app.flags.DEFINE_integer('eval_interval_secs', 25, 'How often to check for/eval new checkpoint.')
FLAGS = tf.app.flags.FLAGS
image_size = {'cifar10': 32,
'mnist': 28,
'imagenet': 224}
channels = {'cifar10': 3,
'mnist': 1,
'imagenet': 3}
num_train_samples = {'cifar10': 50000,
'mnist': 50000,
'imagenet': 1000000}
num_test_samples = {'cifar10': 10000,
'mnist': 10000,
'imagenet': 200000}
num_classes = {'cifar10': 10,
'mnist': 10,
'imagenet': 1000}
def main(_):
g=tf.Graph()
with g.as_default():
download_and_convert_cifar10.run('/tmp/dataset') # TODO this seems unnecessary, to download the files twice.
# dataset = datasets.get_dataset(FLAGS.dataset_name, 'test')
data_provider = dataset_data_provider.DatasetDataProvider(cifar10.get_split('test',FLAGS.dataset_dir),
common_queue_capacity=2*FLAGS.batch_size, common_queue_min=FLAGS.batch_size)
# data_provider = dataset_data_provider.DatasetDataProvider(
# dataset, common_queue_capacity=2*FLAGS.batch_size, common_queue_min=FLAGS.batch_size)
image, label = data_provider.get(['image', 'label'])
image = tf.to_float(image) # TODO this is a hack
images, labels = tf.train.batch([image,label],
batch_size=FLAGS.batch_size,
num_threads=1,
capacity=5*FLAGS.batch_size,
allow_smaller_final_batch=True)
if FLAGS.model == 'resnet':
with slim.arg_scope(resnet_v2.resnet_arg_scope()):
logits, end_points = resnet_v2.resnet_v2_50(images,
num_classes[FLAGS.dataset_name],
is_training=True,
global_pool=True)
predictions = end_points['predictions']
predictions = tf.argmax(predictions, 1)
if FLAGS.model == 'inception':
with slim.arg_scope(inception.inception_v1_arg_scope()):
print(num_classes)
logits, end_points = inception.inception_v1(images,
num_classes[FLAGS.dataset_name],
is_training=False,
global_pool=True)
predictions = tf.argmax(logits, 1)
variables_to_restore = slim.get_variables_to_restore()
one_hot_labels = slim.one_hot_encoding(labels, num_classes[FLAGS.dataset_name])
# one_hot_labels = tf.squeeze(one_hot_labels, axis=1)
# Defining metrics:
names_to_values, name_to_updates = slim.metrics.aggregate_metric_map({
'Accuracy': tf.metrics.accuracy(predictions=predictions, labels=labels),
'Recall_5': tf.metrics.recall_at_k(predictions=end_points['predictions'],
labels=tf.to_int64(one_hot_labels), k=5)
}) #TODO k is hardcoded
for name, value in names_to_values.items():
slim.summaries.add_scalar_summary(
value, name, prefix='eval', print_summary=True)
num_batches = math.ceil(num_test_samples[FLAGS.dataset_name] / float(FLAGS.batch_size))
slim.evaluation.evaluation_loop(
master=FLAGS.master,
checkpoint_dir=FLAGS.checkpoint_dir,
logdir=FLAGS.log_dir,
num_evals=num_batches,
eval_op=name_to_updates.values(),
final_op=names_to_values.values(),
eval_interval_secs=FLAGS.eval_interval_secs)
if __name__ == '__main__':
tf.app.run()