forked from thearn/webcam-pulse-detector
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathimageProcess.py
124 lines (100 loc) · 3.65 KB
/
imageProcess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from openmdao.lib.datatypes.api import Float, Dict, Array, List, Int, Bool
from openmdao.main.api import Component, Assembly
import numpy as np
import cv2
"""
Whole-frame image processing components & helper methods
"""
class RGBSplit(Component):
"""
Extract the red, green, and blue channels from an (n,m,3) shaped
array representing a single image frame with RGB color coding.
At its core, a pretty straighforward numpy slicing operation.
"""
def __init__(self):
super(RGBSplit,self).__init__()
self.add("frame_in", Array(iotype="in"))
self.add("R", Array(iotype="out"))
self.add("G", Array(iotype="out"))
self.add("B", Array(iotype="out"))
def execute(self):
self.R = self.frame_in[:,:,0]
self.G = self.frame_in[:,:,1]
self.B = self.frame_in[:,:,2]
class RGBmuxer(Component):
"""
Take three (m,n) matrices of equal size and combine them into a single
RGB-coded color frame.
"""
def __init__(self):
super(RGBmuxer,self).__init__()
self.add("R", Array(iotype="in"))
self.add("G", Array(iotype="in"))
self.add("B", Array(iotype="in"))
self.add("frame_out", Array(iotype="out"))
def execute(self):
m,n = self.R.shape
self.frame_out = cv2.merge([self.R,self.G,self.B])
class CVwrapped(Component):
"""
Generic wrapper to take the simpler functions from the cv2 or scipy image
libraries to generate connectable openMDAO components for image processing.
The "simple" functions in mind here are the ones of the form:
"matrix in" --> [single method call]--> "matrix out"
Other functionality (like object detection, frame annotation, etc) should
probably be wrapped individually.
"""
def __init__(self, func, *args, **kwargs):
super(CVwrapped,self).__init__()
self.add("frame_in", Array(iotype="in"))
self.add("frame_out", Array(iotype="out"))
self._func = func
self._args = args
self._kwargs = kwargs
def execute(self):
self.frame_out = self._func(self.frame_in, *self._args, **self._kwargs)
class Grayscale(CVwrapped):
"""
Turn (m,n,3) shaped RGB image frame to a (m,n) frame
Discards color information to produce simple image matrix.
"""
def __init__(self):
super(Grayscale,self).__init__(cv2.cvtColor, cv2.COLOR_BGR2GRAY)
class equalizeContrast(CVwrapped):
"""
Automatic contrast correction.
Note: Only works for grayscale images!
"""
def __init__(self):
super(equalizeContrast,self).__init__(cv2.equalizeHist)
class showBPMtext(Component):
"""
Shows the estimated BPM in the image frame
"""
ready = Bool(False,iotype = "in")
bpm = Float(iotype = "in")
x = Int(iotype = "in")
y = Int(iotype = "in")
fps = Float(iotype = "in")
size = Float(iotype = "in")
n = Int(iotype = "in")
def __init__(self):
super(showBPMtext,self).__init__()
self.add("frame_in", Array(iotype="in"))
self.add("frame_out", Array(iotype="out"))
def execute(self):
#if self.bpm:
#print("[!]BPM: %0.1f" % self.bpm)
if self.ready:
col = (0,255,0)
text = "%0.1f bpm" % self.bpm
tsize = 2
else:
col = (100,255,100)
gap = (self.n - self.size) / self.fps
text = "(estimate: %0.1f bpm, wait %0.0f s)" % (self.bpm, gap)
tsize = 1
cv2.putText(self.frame_in,text,
(self.x,self.y),cv2.FONT_HERSHEY_PLAIN,tsize,col)
self.frame_out = self.frame_in
return self.bpm