forked from facebookresearch/deep_bisim4control
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_cluster.sh
executable file
·89 lines (84 loc) · 2.72 KB
/
run_cluster.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/bin/bash
CURDIR=`pwd`
CODEDIR=`mktemp -d -p ${CURDIR}/tmp`
cp ${CURDIR}/*.py ${CODEDIR}
cp -r ${CURDIR}/local_dm_control_suite ${CODEDIR}/
cp -r ${CURDIR}/dmc2gym ${CODEDIR}/
cp -r ${CURDIR}/agent ${CODEDIR}/
DOMAIN=${1:-walker}
TASK=${2:-walk}
ACTION_REPEAT=${3:-2}
NOW=${4:-$(date +"%m%d%H%M")}
ENCODER_TYPE=pixel
DECODER_TYPE=identity
NUM_LAYERS=4
NUM_FILTERS=32
IMG_SOURCE=video
AGENT=bisim
BATCH_SIZE=512
ENCODER_LR=0.001
NUM_FRAMES=100
BISIM_COEF=0.5
CDIR=/checkpoint/${USER}/DBC/${DOMAIN}_${TASK}
mkdir -p ${CDIR}
for NUM_FRAMES in 1000; do
for TRANSITION_MODEL_TYPE in 'ensemble'; do
for SEED in 1 2 3; do
SUBDIR=${AGENT}_${BISIM_COEF}coef_${TRANSITION_MODEL_TYPE}_frames${NUM_FRAMES}_${IMG_SOURCE}kinetics/seed_${SEED}
SAVEDIR=${CDIR}/${SUBDIR}
mkdir -p ${SAVEDIR}
JOBNAME=${NOW}_${DOMAIN}_${TASK}
SCRIPT=${SAVEDIR}/run.sh
SLURM=${SAVEDIR}/run.slrm
CODEREF=${SAVEDIR}/code
extra=""
echo "#!/bin/sh" > ${SCRIPT}
echo "#!/bin/sh" > ${SLURM}
echo ${CODEDIR} > ${CODEREF}
echo "#SBATCH --job-name=${JOBNAME}" >> ${SLURM}
echo "#SBATCH --output=${SAVEDIR}/stdout" >> ${SLURM}
echo "#SBATCH --error=${SAVEDIR}/stderr" >> ${SLURM}
echo "#SBATCH --partition=learnfair" >> ${SLURM}
echo "#SBATCH --nodes=1" >> ${SLURM}
echo "#SBATCH --time=4000" >> ${SLURM}
echo "#SBATCH --ntasks-per-node=1" >> ${SLURM}
echo "#SBATCH --signal=USR1" >> ${SLURM}
echo "#SBATCH --gres=gpu:volta:1" >> ${SLURM}
echo "#SBATCH --mem=500000" >> ${SLURM}
echo "#SBATCH -c 1" >> ${SLURM}
echo "srun sh ${SCRIPT}" >> ${SLURM}
echo "echo \$SLURM_JOB_ID >> ${SAVEDIR}/id" >> ${SCRIPT}
echo "nvidia-smi" >> ${SCRIPT}
echo "cd ${CODEDIR}" >> ${SCRIPT}
echo MUJOCO_GL="osmesa" LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/nvidia-opengl/:$LD_LIBRARY_PATH python train.py \
--domain_name ${DOMAIN} \
--task_name ${TASK} \
--agent ${AGENT} \
--init_steps 1000 \
--bisim_coef ${BISIM_COEF} \
--num_train_steps 1000000 \
--encoder_type ${ENCODER_TYPE} \
--decoder_type ${DECODER_TYPE} \
--encoder_lr ${ENCODER_LR} \
--action_repeat ${ACTION_REPEAT} \
--img_source ${IMG_SOURCE} \
--num_layers ${NUM_LAYERS} \
--num_filters ${NUM_FILTERS} \
--resource_files \'/datasets01/kinetics/070618/400/train/driving_car/*.mp4\' \
--eval_resource_files \'/datasets01/kinetics/070618/400/train/driving_car/*.mp4\' \
--critic_tau 0.01 \
--encoder_tau 0.05 \
--total_frames ${NUM_FRAMES} \
--decoder_weight_lambda 0.0000001 \
--hidden_dim 1024 \
--batch_size ${BATCH_SIZE} \
--transition_model_type ${TRANSITION_MODEL_TYPE} \
--init_temperature 0.1 \
--alpha_lr 1e-4 \
--alpha_beta 0.5\
--work_dir ${SAVEDIR} \
--seed ${SEED} >> ${SCRIPT}
sbatch ${SLURM}
done
done
done