-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathtemplate_featimp_explainer.py
186 lines (157 loc) · 7.08 KB
/
template_featimp_explainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""Feature importance explainer template which can be used create explainer with global and local feature importance explanations."""
import json
import random
import datatable as dt
from h2oaicore.mli.oss.byor.core.explainers import CustomExplainer
from h2oaicore.mli.oss.byor.core.explanations import (
CustomExplanation,
GlobalFeatImpExplanation,
LocalFeatImpExplanation,
)
from h2oaicore.mli.oss.byor.core.representations import (
GlobalFeatImpJSonFormat,
LocalFeatImpDatatableFormat,
)
from h2oaicore.mli.oss.commons import ExplainerModel
class TemplateFeatureImportanceExplainer(CustomExplainer):
"""Feature importance explainer template.
Use this template to create explainer with global and local feature
importance explanations.
"""
_display_name = "Template Feature Importance explainer"
_description = (
"Feature importance explainer template which can be used create explainer "
"with global and local feature importance explanations."
)
_regression = True
_binary = True
_multiclass = True
_global_explanation = True
_local_explanation = True
_explanation_types = [GlobalFeatImpExplanation, LocalFeatImpExplanation]
_keywords = [CustomExplainer.KEYWORD_TEMPLATE]
def setup(self, model: ExplainerModel, persistence, **kwargs):
CustomExplainer.setup(
self, model=model, persistence=persistence, **kwargs
)
def explain(self, X, y=None, explanations_types: list = None, **kwargs):
"""Create global and local (pre-computed/cached) explanations.
Template explainer returns MOCK explanation data - replace mock data
preparation with actual computation to create real explainer.
"""
# explanations list
explanations = list()
# global explanation
global_explanation = self._explain_global_featimp()
explanations.append(global_explanation)
# local explanation
local_explanation = self._explain_local_featimp(
features=[
item["label"]
for item in TemplateFeatureImportanceExplainer.GLOBAL_JSON_FORMAT_F_C[
"data"
]
],
rows=X.shape[0],
)
# associate local explanation with global explanation
global_explanation.has_local = local_explanation.explanation_type()
explanations.append(local_explanation)
return explanations
def _explain_global_featimp(self):
"""Create global feature importance explanation with JSon format
representation. This representation is supported by Grammar of MLI and will
be rendered in UI.
"""
global_explanation = GlobalFeatImpExplanation(
explainer=self,
# UI tile name
display_name="Template Feature Importance",
# UI tab name
display_category=CustomExplanation.DISPLAY_CAT_EXAMPLE,
)
# JSon explanation representation is a set of multiple files
json_representation = GlobalFeatImpJSonFormat(
explanation=global_explanation,
json_data=json.dumps(
TemplateFeatureImportanceExplainer.GLOBAL_JSON_FORMAT_IDX
),
)
# add more format files: per-feature, per-class (saved as added to format)
# (feature and class names MUST fit names from index file ^)
for clazz in TemplateFeatureImportanceExplainer.MOCK_CLASSES:
json_representation.add_data(
# IMPROVE: tweak values for every class
format_data=json.dumps(
TemplateFeatureImportanceExplainer.GLOBAL_JSON_FORMAT_F_C
),
# filename must fit the name from index file ^
file_name=f"featimp_{clazz}.json",
)
return global_explanation
MOCK_CLASSES = ["class_A", "class_B", "class_C"]
# feature importance
GLOBAL_JSON_FORMAT_IDX: dict = {
"files": {
"class_A": "featimp_class_A.json",
"class_B": "featimp_class_B.json",
"class_C": "featimp_class_C.json",
},
"total_rows": 20,
"metrics": [{"R2": 0.96}, {"RMSE": 0.03}],
"documentation": _description,
}
# feature importance: feature-?, class-?
GLOBAL_JSON_FORMAT_F_C: dict = {
"bias": 0.15,
"data": [
{"label": "PAY_0", "value": 1.00, "scope": "global"},
{"label": "PAY_2", "value": 0.519, "scope": "global"},
{"label": "PAY_3", "value": 0.245, "scope": "global"},
{"label": "PAY_4", "value": 0.208, "scope": "global"},
{"label": "PAY_5", "value": 0.140, "scope": "global"},
{"label": "PAY_6", "value": 0.0620, "scope": "global"},
{"label": "LIMIT_BAL", "value": 0.0406, "scope": "global"},
{"label": "PAY_AMT1", "value": 0.0331, "scope": "global"},
{"label": "BILL_AMT1", "value": 0.0308, "scope": "global"},
{"label": "PAY_AMT4", "value": 0.0122, "scope": "global"},
{"label": "BILL_AMT2", "value": 0.0113, "scope": "global"},
{"label": "PAY_AMT2", "value": 0.00971, "scope": "global"},
{"label": "PAY_AMT5", "value": 0.00923, "scope": "global"},
{"label": "BILL_AMT5", "value": 0.00827, "scope": "global"},
{"label": "BILL_AMT4", "value": 0.00800, "scope": "global"},
{"label": "PAY_AMT3", "value": 0.00751, "scope": "global"},
{"label": "BILL_AMT3", "value": 0.00635, "scope": "global"},
{"label": "AGE", "value": 0.00609, "scope": "global"},
{"label": "PAY_AMT6", "value": 0.00578, "scope": "global"},
{"label": "BILL_AMT6", "value": 0.00382, "scope": "global"},
],
}
def _explain_local_featimp(self, features: list, rows: int):
"""Create local feature importance explanation with datatable format
representation. This representation is supported by Grammar of MLI and will
be rendered in UI.
As local explanation will be precomputed and persisted (cached), it will be
returned by Driverless AI automatically. Therefore this explainer doesn't
have to implement `explain_local()` method for on-demand handling.
Parameters
----------
features: List[str]
Feature names.
rows: int
Dataset row count for which mock local explanation should be created.
"""
local_explanation = LocalFeatImpExplanation(explainer=self)
# mock data - this data to be replaced with actual computation data/explanation,
# determine frame format from LocalFeatImpDatatableFormat docstring
data_dict: dict = {}
for feature in features:
data_dict[feature] = [random.random() for _ in range(rows)]
#
# JSon explanation representation is a set of multiple files
#
dt_format = LocalFeatImpDatatableFormat(
explanation=local_explanation, frame=dt.Frame(data_dict)
)
local_explanation.add_format(dt_format)
return local_explanation