-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathlogistic_regression.py
1329 lines (1134 loc) · 56.3 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Logistic Regression based upon sklearn.
"""
import datatable as dt
import numpy as np
import random
import pandas as pd
import os
import copy
import codecs
from sklearn.preprocessing import StandardScaler, LabelEncoder, OneHotEncoder
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
from sklearn.compose import ColumnTransformer, make_column_transformer
from sklearn.pipeline import make_pipeline
from sklearn.impute import SimpleImputer
from sklearn.metrics import roc_auc_score, make_scorer
from h2oaicore.models import CustomModel
from h2oaicore.systemutils import config, physical_cores_count, save_obj_atomically, load_obj, DefaultOrderedDict
from h2oaicore.systemutils import make_experiment_logger, loggerinfo, loggerwarning
from h2oaicore.transformers import CatOriginalTransformer, FrequentTransformer, CVTargetEncodeTransformer
from h2oaicore.transformer_utils import Transformer
from h2oaicore.transformers_more import CatTransformer, LexiLabelEncoderTransformer
from sklearn.model_selection import StratifiedKFold, cross_val_score
from sklearn.ensemble import VotingClassifier
class LogisticRegressionModel(CustomModel):
"""
Logistic Regression
Useful when weak or no interactions between features,
or large inherent number of levels in categorical features
Other useful DAI options if want to only use feature made internally by this model:
config.prob_prune_genes = False
config.prob_prune_by_features = False
# Useful if want training to ultimately see all data with validated max_iter
config.fixed_ensemble_level=0
Recipe to do:
1) Add separate LogisticRegressionEarlyStopping class to use warm start to take iterations a portion at a time,
and score with known/given metric, and early stop to avoid overfitting on validation.
2) Improve bisection stepping for search
3) Consider from deployml.sklearn import LogisticRegressionBase
4) Implement LinearRegression/ElasticNet (https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model)
5) Implement other categorical missing encodings (same strategies as numerics)
6) Implement other scorers (i.e. checking score_f_name -> sklearn metric or using DAI metrics)
"""
_kaggle = False # some kaggle specific optimizations for https://www.kaggle.com/c/cat-in-the-dat
# with _kaggle_features=False and no catboost features:
# gives 0.8043 DAI validation for some seeds/runs,
# which leads to 0.80802 public score after only 2 minutes of running on accuracy=2, interpretability=1
# with _kaggle_features=False and catboost features:
# gives 0.8054 DAI validation for some seeds/runs,
# which leads to 0.80814 public score after only 10 minutes of running on accuracy=7, interpretability=1
# whether to generate features for kaggle
# these features do not help the score, but do make sense as plausible features to build
_kaggle_features = False
# whether to use validation and train together (assumes test with sample_weight=0 already part of train+valid) for features
_kaggle_mode = False
# numerical imputation for all columns (could be done per column chosen by mutations)
_impute_num_type = 'sklearn' # best for linear models
# _impute_num_type = 'oob' # risky for linear models, but can be used for testing
_impute_int_type = 'oob'
_impute_bool_type = 'oob'
_oob_bool = False
# categorical imputation for all columns (could be done per column chosen by mutations)
_impute_cat_type = 'oob'
_oob_cat = "__OOB_CAT__"
# unique identifier for OHE feature names
_ohe_postfix = "_*#!^()^{}"
# not required to be this strict, but good starting point to only use this recipe's features
_included_transformers = ['CatOriginalTransformer', 'OriginalTransformer', 'CatTransformer']
if _kaggle and 'CatTransformer' in _included_transformers:
# Just handle all cats directly
_included_transformers.remove('CatTransformer')
_can_handle_non_numeric = True # tell DAI we can handle non-numeric (i.e. strings)
_can_handle_text = True # but no special handling by base model, just doesn't fail
_can_handle_categorical = True # tell DAI we can handle numerically encoded categoricals for use as categoricals
_num_as_cat = False or _kaggle # treating numeric as categorical best handled per column, but can force all numerics as cats
_num_as_num = False
_mutate_all = True # tell DAI we fully control mutation
_mutate_by_one = False # tell our recipe only changes one key at a time, can limit exploration if set as True
_mutate_by_one_sometimes = True
_always_defaults = False
_randomized_random_state = False
_overfit_limit_iteration_step = 10
# tell DAI want to keep track of self.params changes during fit, and to average numeric values across folds (if any)
_used_return_params = True
_average_return_params = True
# other DAI vars
_regression = False
_binary = True
_multiclass = True
_parallel_task = True # set to False may lead to faster performance if not doing grid search or cv search (should also set expert batch_cpu_tuning_max_workers to number of cores)
_fit_by_iteration = True
_fit_iteration_name = 'max_iter'
_display_name = "LR"
_description = "Logistic Regression"
_allow_basis_of_default_individuals = False
_fs_permute_must_use_self = True
_check_stall = False # avoid stall check, joblib loky stuff detatches sometimes
_testing_can_skip_failure = False # ensure tested as if shouldn't fail
# recipe vars for encoding choices
_use_numerics = True
_use_ohe_encoding = True
_use_target_encoding = False
_use_target_encoding_other = False
_use_ordinal_encoding = False
_use_catboost_encoding = False or _kaggle # Note: Requires data be randomly shuffled so target is not in special order
_use_woe_encoding = False
# tell DAI what pip modules we will use
_modules_needed_by_name = ['category_encoders']
if _use_target_encoding_other:
_modules_needed_by_name.extend(['target_encoding'])
# _modules_needed_by_name.extend(['git+https://github.com/h2oai/target_encoding#egg=target_encoding'])
# whether to show debug prints and write munged view to disk
_debug = False
# wehther to cache feature results, only by transformer instance and X shape, so risky to use without care.
_cache = False
_ensemble = False
def set_default_params(self, accuracy=10, time_tolerance=10,
interpretability=1, **kwargs):
# Fill up parameters we care about
self.params = {}
self.mutate_params(get_default=True, accuracy=accuracy, time_tolerance=time_tolerance,
interpretability=interpretability, **kwargs)
def mutate_params(self, accuracy=10, time_tolerance=10, interpretability=1, **kwargs):
get_default = 'get_default' in kwargs and kwargs['get_default'] or self._always_defaults
params_orig = copy.deepcopy(self.params)
# control some behavior by how often the model was mutated.
# Good models that improve get repeatedly mutated, bad models tend to be one-off mutations of good models
if get_default:
self.params['mutation_count'] = 0
else:
if 'mutation_count' in self.params:
self.params['mutation_count'] += 1
else:
self.params['mutation_count'] = 0
# keep track of fit count, for other control over hyper parameter search in this recipe
if 'fit_count' not in self.params:
self.params['fit_count'] = 0
self.params['random_state'] = kwargs.get("random_state", 1234)
if self._randomized_random_state:
self.params['random_state'] = random.randint(0, 32000)
self.params['n_jobs'] = self.params_base.get('n_jobs', max(1, physical_cores_count))
# Modify certain parameters for tuning
if self._kaggle:
C_list = [0.095, 0.1, 0.115, 0.11, 0.105, 0.12, 0.125, 0.13, 0.14]
else:
C_list = [0.05, 0.075, 0.1, 0.15, 0.2, 1.0, 5.0]
self.params["C"] = float(np.random.choice(C_list)) if not get_default else 0.12
tol_list = [1e-4, 1e-3, 1e-5]
if accuracy < 5:
default_tol = 1e-4
elif accuracy < 6:
default_tol = 1e-5
elif accuracy <= 7:
default_tol = 1e-6
else:
default_tol = 1e-7
if self._kaggle:
default_tol = 1e-8
if default_tol not in tol_list:
tol_list.append(default_tol)
self.params["tol"] = float(np.random.choice(tol_list)) if not (self._kaggle or get_default) else default_tol
# solver_list = ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']
# newton-cg too slow
# sag too slow
# solver_list = ['lbfgs', 'liblinear', 'saga']
solver_list = ['lbfgs']
self.params["solver"] = str(np.random.choice(solver_list)) if not get_default else 'lbfgs'
if self._kaggle:
max_iter_list = [300, 350, 400, 450, 500, 700, 800, 900, 1000, 1500]
else:
max_iter_list = [150, 175, 200, 225, 250, 300]
self.params["max_iter"] = int(np.random.choice(max_iter_list)) if not get_default else 700
# self.params["max_iter"] = 37
if self.params["solver"] in ['lbfgs', 'newton-cg', 'sag']:
penalty_list = ['l2', 'none']
elif self.params["solver"] in ['saga']:
penalty_list = ['l1', 'l2', 'none']
elif self.params["solver"] in ['liblinear']:
penalty_list = ['l1']
else:
raise RuntimeError("No such solver: %s" % self.params['solver'])
self.params["penalty"] = str(np.random.choice(penalty_list)) if not (self._kaggle or get_default) else 'l2'
if self.params["penalty"] == 'elasticnet':
l1_ratio_list = [0, 0.25, 0.5, 0.75, 1.0]
self.params["l1_ratio"] = float(np.random.choice(l1_ratio_list))
else:
self.params.pop('l1_ratio', None)
if self.params["penalty"] == 'none':
self.params.pop('C', None)
else:
self.params['C'] = float(np.random.choice(C_list)) if not get_default else 0.12
if self.num_classes > 2:
self.params['multi_class'] = 'auto'
strategy_list = ['mean', 'median', 'most_frequent', 'constant']
self.params['strategy'] = str(np.random.choice(strategy_list)) if not get_default else 'mean'
if self._use_target_encoding:
min_samples_leaf_list = [1, 10, 50, 100]
self.params['min_samples_leaf'] = float(np.random.choice(min_samples_leaf_list))
smoothing_list = [1.0, 0.5, 10.0, 50.0]
self.params['smoothing'] = float(np.random.choice(smoothing_list))
if self._use_catboost_encoding:
if self._kaggle:
sigma_list = [None, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9]
else:
sigma_list = [None, 0.01, 0.05, 0.1, 0.5]
self.params['sigma'] = random.choice(sigma_list)
if self._use_woe_encoding:
randomized_list = [True, False]
self.params['randomized'] = random.choice(randomized_list)
sigma_woe_list = [0.05, 0.001, 0.01, 0.1, 0.005]
self.params['sigma_woe'] = random.choice(sigma_woe_list)
regularization_list = [1.0, 0.1, 2.0]
self.params['regularization'] = random.choice(regularization_list)
# control search in recipe
self.params['grid_search_iterations'] = accuracy >= 8
# cv search for hyper parameters, can be used in conjunction with _grid_search_by_iterations = True or False
self.params['cv_search'] = accuracy >= 9
if self._mutate_by_one_sometimes:
if np.random.random() > 0.5:
do_mutate_by_one = True
else:
do_mutate_by_one = False
else:
do_mutate_by_one = self._mutate_by_one
if do_mutate_by_one and not get_default and params_orig:
pick_key = str(np.random.choice(list(self.params.keys()), size=1)[0])
value = self.params[pick_key]
self.params = copy.deepcopy(params_orig)
self.params[pick_key] = value
# validate parameters to avoid single key leading to invalid overall parameters
if pick_key == 'penalty':
# has restrictions need to switch other keys if mismatched
if self.params["solver"] in ['lbfgs', 'newton-cg', 'sag']:
penalty_list = ['l2', 'none']
elif self.params["solver"] in ['saga']:
penalty_list = ['l1', 'l2', 'none']
elif self.params["solver"] in ['liblinear']:
penalty_list = ['l1']
if not self.params['penalty'] in penalty_list:
self.params['penalty'] = penalty_list[0] # just choose first
def fit(self, X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs):
if self._kaggle_mode and eval_set is not None:
new_X = dt.rbind([X, eval_set[0][0]])
new_sample_weight = np.concatenate([sample_weight, sample_weight_eval_set[0]])
new_sample_weight[X.shape[0]:X.shape[0] + eval_set[0][0].shape[0]] = 0
new_y = np.concatenate([y, eval_set[0][1]])
X = new_X
y = new_y
sample_weight = new_sample_weight
orig_dir = os.getcwd()
os.chdir(self.context.experiment_tmp_dir) # for joblib
os.makedirs(self.context.experiment_tmp_dir, exist_ok=True) # another copy for DAI transformers
orig_cols = list(X.names)
if self.num_classes >= 2:
lb = LabelEncoder()
lb.fit(self.labels)
y = lb.transform(y)
min_count = np.min(np.unique(y, return_counts=True)[1])
if min_count < 9:
self.params['cv_search'] = False
if min_count < 3:
self.params['grid_search_iterations'] = False
self.params['cv_search'] = False
if self._ensemble:
self.params['grid_search_iterations'] = False
self.params['cv_search'] = False
# save pre-datatable-imputed X
X_dt = X
# Apply OOB imputation
self.oob_imputer = OOBImpute(self._impute_num_type, self._impute_int_type, self._impute_bool_type,
self._impute_cat_type, self._oob_bool, self._oob_cat)
X = self.oob_imputer.fit_transform(X)
# convert to pandas for sklearn
X = X.to_pandas()
X_orig_cols_names = list(X.columns)
if self._kaggle_features:
self.features = make_features(cache=self._cache)
X = self.features.fit_transform(X, y, **kwargs)
else:
self.features = None
# print("LR: pandas dtypes: %s" % (str(list(X.dtypes))))
# FEATURE GROUPS
# Choose which features are numeric or categorical
cat_features = [x for x in X_orig_cols_names if CatOriginalTransformer.is_me_transformed(x)]
catlabel_features = [x for x in X_orig_cols_names if CatTransformer.is_me_transformed(x)]
# can add explicit column name list to below force_cats
force_cats = cat_features + catlabel_features
actual_numerical_features = (X.dtypes == 'float') | (X.dtypes == 'float32') | (
X.dtypes == 'float64') # | (X.dtypes == 'int') | (X.dtypes == 'int32') | (X.dtypes == 'int64') | (X.dtypes == 'bool')
# choose if numeric is treated as categorical
if not self._num_as_cat or self._num_as_num:
# treat (e.g.) binary as both numeric and categorical
numerical_features = copy.deepcopy(actual_numerical_features)
else:
# no numerics
numerical_features = X.dtypes == 'invalid'
if self._num_as_cat:
# then can't have None sent to cats, impute already up front
# force oob imputation for numerics
self.oob_imputer = OOBImpute('oob', 'oob', 'oob',
self._impute_cat_type, self._oob_bool, self._oob_cat)
X = self.oob_imputer.fit_transform(X_dt)
X = X.to_pandas()
if self._kaggle_features:
X = self.features.fit_transform(X, y, **kwargs)
if self._kaggle_features:
numerical_features = self.features.update_numerical_features(numerical_features)
if not self._num_as_cat:
# then cats are only things that are not numeric
categorical_features = ~actual_numerical_features
else:
# then everything is a cat
categorical_features = ~numerical_features # (X.dtypes == 'invalid')
# below can lead to overlap between what is numeric and what is categorical
more_cats = (pd.Series([True if x in force_cats else False for x in list(categorical_features.index)],
index=categorical_features.index))
categorical_features = (categorical_features) | (more_cats)
if self._kaggle_features:
categorical_features = self.features.update_categorical_features(categorical_features)
cat_X = X.loc[:, categorical_features]
num_X = X.loc[:, numerical_features]
if self._debug:
print("LR: Cat names: %s" % str(list(cat_X.columns)))
print("LR: Num names: %s" % str(list(num_X.columns)))
# TRANSFORMERS
lr_params = copy.deepcopy(self.params)
lr_params.pop('grid_search_by_iterations', None)
lr_params.pop('cv_search', None)
grid_search = False # WIP
full_features_list = []
transformers = []
if self._use_numerics and any(numerical_features.values):
impute_params = {}
impute_params['strategy'] = lr_params.pop('strategy', 'mean')
full_features_list.extend(list(num_X.columns))
transformers.append(
(make_pipeline(SimpleImputer(**impute_params), StandardScaler()), numerical_features)
)
# http://contrib.scikit-learn.org/categorical-encoding/
if self._use_ordinal_encoding and any(categorical_features.values):
ord_params = dict(handle_missing='value', handle_unknown='value')
full_features_list.extend(list(cat_X.columns))
# Note: OrdinalEncoder doesn't handle unseen features, while CategoricalEncoder used too
import category_encoders as ce
transformers.append(
(ce.OrdinalEncoder(**ord_params), categorical_features)
)
if self._use_catboost_encoding and any(categorical_features.values):
cb_params = dict(handle_missing='value', handle_unknown='value')
cb_params['sigma'] = lr_params.pop('sigma')
full_features_list.extend(list(cat_X.columns))
import category_encoders as ce
transformers.append(
(ce.CatBoostEncoder(**cb_params), categorical_features)
)
if self._use_woe_encoding and any(categorical_features.values):
woe_params = dict(handle_missing='value', handle_unknown='value')
woe_params['randomized'] = lr_params.pop('randomized')
woe_params['sigma'] = lr_params.pop('sigma_woe')
woe_params['regularization'] = lr_params.pop('regularization')
full_features_list.extend(list(cat_X.columns))
import category_encoders as ce
transformers.append(
(ce.WOEEncoder(**woe_params), categorical_features)
)
if self._use_target_encoding and any(categorical_features.values):
te_params = dict(handle_missing='value', handle_unknown='value')
te_params['min_samples_leaf'] = lr_params.pop('min_samples_leaf')
te_params['smoothing'] = lr_params.pop('smoothing')
full_features_list.extend(list(cat_X.columns))
import category_encoders as ce
transformers.append(
(ce.TargetEncoder(**te_params), categorical_features)
)
if self._use_target_encoding_other and any(categorical_features.values):
full_features_list.extend(list(cat_X.columns))
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=self.params['random_state'])
split_cv = [cv]
# split_cv = [3, 3]
ALPHA, MAX_UNIQUE, FEATURES_COUNT = get_TE_params(cat_X, debug=self._debug)
from target_encoding import TargetEncoder
transformers.append(
(TargetEncoder(alpha=ALPHA, max_unique=MAX_UNIQUE, split_in=split_cv),
categorical_features)
)
if self._use_ohe_encoding and any(categorical_features.values):
transformers.append(
(OneHotEncoder(handle_unknown='ignore', sparse=True), categorical_features)
)
assert len(transformers) > 0, "should have some features"
preprocess = make_column_transformer(*transformers)
# ESTIMATOR
lr_defaults = dict(penalty='l2', dual=False, tol=1e-4, C=1.0,
fit_intercept=True, intercept_scaling=1, class_weight=None,
random_state=None, solver='warn', max_iter=100,
multi_class='warn', verbose=0, warm_start=False, n_jobs=None,
l1_ratio=None)
allowed_lr_kwargs_keys = lr_defaults.keys()
lr_params_copy = copy.deepcopy(lr_params)
for k, v in lr_params_copy.items():
if k not in allowed_lr_kwargs_keys:
lr_params.pop(k, None)
del lr_params_copy
can_score = self.num_classes == 2 and 'AUC' in self.params_base['score_f_name'].upper()
# print("LR: can_score: %s" % str(can_score))
if can_score:
scorer = make_scorer(roc_auc_score, greater_is_better=True, needs_proba=True)
else:
scorer = None
if not ('C' in lr_params or 'l1_ratios' in lr_params):
# override
self.params['cv_search'] = False
if not self.params['cv_search']:
estimator = LogisticRegression(**lr_params)
estimator_name = 'logisticregression'
else:
lr_params_cv = copy.deepcopy(lr_params)
if 'C' in lr_params:
lr_params_cv['Cs'] = self.get_param_range(self.params['C'], self.params['fit_count'], func_type='log')
# print("LR: CV: Cs: %s" % str(lr_params_cv['Cs']))
if 'l1_ratios' in lr_params:
lr_params_cv['l1_ratios'] = self.get_param_range(self.params['l1_ratio'], self.params['fit_count'],
func_type='linear')
# print("LR: CV: l1_ratios: %s" % str(lr_params_cv['l1_ratios']))
lr_params_cv.pop('n_jobs', None)
lr_params_cv.pop('C', None)
lr_params_cv.pop('l1_ratio', None)
if lr_params_cv['penalty'] == 'none':
lr_params_cv['penalty'] = 'l2'
estimator = LogisticRegressionCV(n_jobs=self.params['n_jobs'],
cv=3, refit=True, scoring=scorer, **lr_params_cv)
estimator_name = 'logisticregressioncv'
# PIPELINE
if not self._ensemble:
model = make_pipeline(
preprocess,
estimator, memory="./")
else:
ALPHA, MAX_UNIQUE, FEATURES_COUNT = get_TE_params(cat_X, debug=self._debug)
from target_encoding import TargetEncoderClassifier
te_estimator = TargetEncoderClassifier(alpha=ALPHA, max_unique=MAX_UNIQUE, used_features=FEATURES_COUNT)
estimators = [(estimator_name, estimator), ('teclassifier', te_estimator)]
model = make_pipeline(
preprocess,
VotingClassifier(estimators))
# FIT
if self.params['grid_search_iterations'] and can_score:
# WIP FIXME for multiclass and other scorers
from sklearn.model_selection import GridSearchCV
max_iter_range = self.get_param_range(self.params['max_iter'], self.params['fit_count'],
range_limit=self._overfit_limit_iteration_step, func_type='log')
# print("LR: max_iter_range: %s" % str(max_iter_range))
param_grid = {
'%s__max_iter' % estimator_name: max_iter_range,
}
grid_clf = GridSearchCV(model, param_grid, n_jobs=self.params['n_jobs'],
cv=3, refit=True, scoring=scorer)
fitkwargs = dict()
fitkwargs["%s__sample_weight" % estimator_name] = sample_weight
grid_clf.fit(X, y, **fitkwargs)
model = grid_clf.best_estimator_
# print("LR: best_index=%d best_score: %g best_params: %s" % (
# grid_clf.best_index_, grid_clf.best_score_, str(grid_clf.best_params_)))
elif grid_search:
# WIP
from sklearn.model_selection import GridSearchCV
param_grid = {
'columntransformer__pipeline__simpleimputer__strategy': ['mean', 'median'],
'%s__C' % estimator_name: [0.1, 0.5, 1.0],
}
grid_clf = GridSearchCV(model, param_grid, cv=10)
fitkwargs = dict()
fitkwargs["%s__sample_weight" % estimator_name] = sample_weight
grid_clf.fit(X, y, **fitkwargs)
model = grid_clf.best_estimator_
# self.best_params = grid_clf.best_params_
else:
fitkwargs = dict()
fitkwargs["%s__sample_weight" % estimator_name] = sample_weight
X = X.replace([np.inf, -np.inf], np.nan)
X = X.fillna(value=0)
model.fit(X, y, **fitkwargs)
# get actual LR model
lr_model = model.named_steps[estimator_name]
# average importances over classes
importances = np.average(np.fabs(np.array(lr_model.coef_)), axis=0)
# average iterations over classes (can't take max_iter per class)
iterations = int(np.average(lr_model.n_iter_))
# print("LR: iterations: %d" % iterations)
if self._debug:
full_features_list_copy = copy.deepcopy(full_features_list)
# reduce OHE features to original names
ohe_features_short = []
if self._use_ohe_encoding and any(categorical_features.values):
input_features = [x + self._ohe_postfix for x in cat_X.columns]
ohe_features = pd.Series(
model.named_steps['columntransformer'].named_transformers_['onehotencoder'].get_feature_names(
input_features=input_features))
def f(x):
return '_'.join(x.split(self._ohe_postfix + '_')[:-1])
# identify OHE features
ohe_features_short = ohe_features.apply(lambda x: f(x))
full_features_list.extend(list(ohe_features_short))
if self._debug:
full_features_list_copy.extend(list(ohe_features))
imp = pd.Series(importances, index=full_features_list_copy).sort_values(ascending=False)
import uuid
struuid = str(uuid.uuid4())
imp.to_csv("prepreimp_%s.csv" % struuid)
if self._debug:
imp = pd.Series(importances, index=full_features_list).sort_values(ascending=False)
import uuid
struuid = str(uuid.uuid4())
imp.to_csv("preimp_%s.csv" % struuid)
# aggregate our own features
if self._kaggle_features:
full_features_list = self.features.aggregate(full_features_list, importances)
msg = "LR: num=%d cat=%d : ohe=%d : imp=%d full=%d" % (
len(num_X.columns), len(cat_X.columns), len(ohe_features_short), len(importances), len(full_features_list))
if self._debug:
print(msg)
assert len(importances) == len(full_features_list), msg
if self._debug:
imp = pd.Series(importances, index=full_features_list).sort_values(ascending=False)
import uuid
struuid = str(uuid.uuid4())
imp.to_csv("imp_%s.csv" % struuid)
# aggregate importances by dai feature name
importances = pd.Series(np.abs(importances), index=full_features_list).groupby(level=0).mean()
assert len(importances) == len(
X_orig_cols_names), "lenimp=%d lenorigX=%d msg=%s : X.columns=%s dtypes=%s : full_features_list=%s" % (
len(importances), len(X_orig_cols_names), msg,
str(list(X.columns)), str(list(X.dtypes)), str(full_features_list))
# save hyper parameter searched results for next search
self.params['max_iter'] = iterations
if self.params['cv_search']:
self.params['C'] = np.average(lr_model.C_, axis=0)
if 'l1_ratios' in lr_params and self.params['cv_search']:
self.params['l1_ratio'] = np.average(lr_model.l1_ratio_, axis=0)
if 'fit_count' in self.params:
self.params['fit_count'] += 1
else:
self.params['fit_count'] = 0
importances_list = importances.tolist()
importances_list = list(np.array(importances_list) / np.max(importances_list))
self.set_model_properties(model=(model, self.features),
features=orig_cols,
importances=importances_list,
iterations=iterations)
self.features = None
os.chdir(orig_dir)
def get_param_range(self, param, fit_count, range_limit=None, func_type='linear'):
if func_type == 'log':
f = np.log
inv_f = np.exp
bottom = 1.0
top = 1.0
else:
f = np.abs
inv_f = np.abs
top = bottom = 1.0
# bisect toward optimal param
step_count = 3
params_step = 2 + fit_count
start_range = param * (1.0 - bottom / params_step)
end_range = param * (1.0 + top / params_step)
if range_limit is not None:
if end_range - start_range < range_limit:
# if below some threshold, don't keep refining to avoid overfit
return [param]
start = f(start_range)
end = f(end_range)
step = 1.0 * (end - start) / step_count
param_range = np.arange(start, end, step)
if type(param) == int:
param_range = [int(inv_f(x)) for x in param_range if int(inv_f(x)) > 0]
else:
param_range = [inv_f(x) for x in param_range if inv_f(x) > 0]
if param not in param_range:
param_range.append(param)
param_range = sorted(param_range)
return param_range
def predict(self, X, **kwargs):
orig_dir = os.getcwd()
os.chdir(self.context.experiment_tmp_dir) # for joblib
X = dt.Frame(X)
X = self.oob_imputer.transform(X)
model_tuple, _, _, _ = self.get_model_properties()
model, features = model_tuple
X = X.to_pandas()
if self._kaggle_features and features is not None:
X = features.transform(X)
X = X.replace([np.inf, -np.inf], np.nan)
X = X.fillna(value=0)
if self.num_classes == 1:
preds = model.predict(X)
else:
preds = model.predict_proba(X)
os.chdir(orig_dir)
return preds
class OOBImpute(object):
def __init__(self, impute_num_type, impute_int_type, impute_bool_type, impute_cat_type, oob_bool, oob_cat):
self._impute_num_type = impute_num_type
self._impute_int_type = impute_int_type
self._impute_bool_type = impute_bool_type
self._impute_cat_type = impute_cat_type
self._oob_bool = oob_bool
self._oob_cat = oob_cat
def fit(self, X: dt.Frame):
# just ignore output
self.fit_transform(X)
def fit_transform(self, X: dt.Frame):
# IMPUTE
# print("LR: types number of columns: %d : %d %d %d %d" % (len(X.names), len(X[:, [float]].names), len(X[:, [int]].names), len(X[:, [bool]].names), len(X[:, [str]].names)))
for col in X[:, [float]].names:
XX = X[:, col]
XX.replace([None, np.inf, -np.inf], np.nan)
X[:, col] = XX
if self._impute_num_type == 'oob':
# Replace missing values with a value smaller than all observed values
self.min = dict()
for col in X[:, [float]].names:
XX = X[:, col]
self.min[col] = XX.min1()
if self.min[col] is None or np.isnan(self.min[col]) or np.isinf(self.min[col]):
self.min[col] = -1e10
else:
self.min[col] -= 1
XX.replace([None, np.inf, -np.inf], self.min[col])
X[:, col] = XX
assert X[dt.isna(dt.f[col]), col].nrows == 0
if self._impute_int_type == 'oob':
# Replace missing values with a value smaller than all observed values
self.min_int = dict()
for col in X[:, [int]].names:
XX = X[:, col]
self.min_int[col] = XX.min1()
if self.min_int[col] is None or np.isnan(self.min_int[col]) or np.isinf(self.min_int[col]):
self.min_int[col] = 0
XX.replace([None, np.inf, -np.inf], self.min_int[col])
X[:, col] = XX
assert X[dt.isna(dt.f[col]), col].nrows == 0
if self._impute_bool_type == 'oob':
for col in X[:, [bool]].names:
XX = X[:, col]
XX.replace([None, np.inf, -np.inf], self._oob_bool)
X[:, col] = XX
assert X[dt.isna(dt.f[col]), col].nrows == 0
if self._impute_cat_type == 'oob':
for col in X[:, [str]].names:
XX = X[:, col]
XX.replace([None, np.inf, -np.inf], self._oob_cat)
X[:, col] = XX
assert X[dt.isna(dt.f[col]), col].nrows == 0
return X
def transform(self, X: dt.Frame):
if self._impute_num_type == 'oob':
for col in X[:, [float]].names:
XX = X[:, col]
XX.replace([None, np.inf, -np.inf], self.min[col])
X[:, col] = XX
if self._impute_int_type == 'oob':
for col in X[:, [int]].names:
XX = X[:, col]
XX.replace([None, np.inf, -np.inf], self.min_int[col])
X[:, col] = XX
if self._impute_bool_type == 'oob':
for col in X[:, [bool]].names:
XX = X[:, col]
XX.replace([None, np.inf, -np.inf], self._oob_bool)
X[:, col] = XX
if self._impute_cat_type == 'oob':
for col in X[:, [str]].names:
XX = X[:, col]
XX.replace([None, np.inf, -np.inf], self._oob_cat)
X[:, col] = XX
return X
class make_features(object):
_postfix = "@%@(&#%@))){}#"
def __init__(self, cache=False):
self.cache = cache
self.dai_te = False
self.other_te = True
self.new_names_dict = {}
self.raw_names_dict = {}
self.raw_names_dict_reversed = {}
self.spring = None
self.summer = None
self.fall = None
self.winter = None
self.monthcycle1 = None
self.monthcycle2 = None
self.weekend = None
self.daycycle1 = None
self.daycycle2 = None
self.lexi = None
self.ord5sorted = None
self.ord5more1 = None
self.ord5more2 = None
def apply_clone(self, src):
for k, v in src.__dict__.items():
setattr(self, k, v)
def fit_transform(self, X: pd.DataFrame, y=None, transform=False, **kwargs):
if not transform:
self.orig_cols = list(X.columns)
if 'IS_LEAKAGE' in kwargs or 'IS_SHIFT' in kwargs:
self.raw_names_dict = {v: v for v in list(X.columns)}
self.raw_names_dict_reversed = {v: k for k, v in self.raw_names_dict.items()}
else:
self.raw_names_dict = {Transformer.raw_feat_name(v): v for v in list(X.columns)}
self.raw_names_dict_reversed = {v: k for k, v in self.raw_names_dict.items()}
file = "munged_%s_%s_%d_%d.csv" % (__name__, transform, X.shape[0], X.shape[1])
file = file.replace("csv", "pkl")
file2 = file.replace("munged", "clone")
if self.cache and os.path.isfile(file) and os.path.isfile(file2):
# X = pd.read_csv(file, sep=',', header=0)
X = load_obj(file)
X = X.drop("target", axis=1, errors='ignore')
if not transform:
self.apply_clone(load_obj(file2))
return X
if 'bin_0' in self.raw_names_dict:
X.drop(self.raw_names_dict['bin_0'], errors='ignore')
if 'bin_3' in self.raw_names_dict:
X.drop(self.raw_names_dict['bin_3'], errors='ignore')
# use circular color wheel position for nom_0
def nom12num(x):
# use number of sides
d = {'Circle': 0, 'Polygon': -1, 'Star': 10, 'Triangle': 3, 'Square': 4, 'Trapezoid': 5}
return d[x]
X, self.sides = self.make_feat(X, 'nom_1', 'sides', nom12num)
def nom22num(x):
# use family level features expanded encoding or relative size for nom_2
# ordered by height
d = {'Snake': 0, 'Axolotl': 1, 'Hamster': 2, 'Cat': 3, 'Dog': 4, 'Lion': 5}
return d[x]
X, self.animal = self.make_feat(X, 'nom_2', 'animal', nom22num)
# def has_char(x, char):
# x_str = str(x)
# return 1 if char.upper() in x_str.upper() else 0
# self.haschars = [None] * len(self.orig_cols)
# for ni, c in enumerate(self.orig_cols):
# X, self.lenfeats[ni] = self.make_feat(X, c, 'len', get_len)
def get_len(x):
x_str = str(x)
return len(x_str)
self.lenfeats = [None] * len(self.orig_cols)
for ni, c in enumerate(self.orig_cols):
X, self.lenfeats[ni] = self.make_feat(X, c, 'len', get_len)
#
def get_first(x):
x_str = str(x)
return x_str[0] if len(x_str) > 0 else ""
self.firstchar = [None] * len(self.orig_cols)
for ni, c in enumerate(self.orig_cols):
X, self.firstchar[ni] = self.make_feat(X, c, 'firstc', get_first, is_float=False)
#
def get_last(x):
x_str = str(x)
return x_str[-1] if len(x_str) > 0 else ""
self.lastchar = [None] * len(self.orig_cols)
for ni, c in enumerate(self.orig_cols):
X, self.lastchar[ni] = self.make_feat(X, c, 'lastc', get_last, is_float=False)
#
hex_strings = ['nom_5', 'nom_6', 'nom_7', 'nom_8', 'nom_9']
#
if True:
# convert hex to binary and use as 8-feature (per hex feature) encoding
def get_charnum(x, i=None):
return str(x)[i]
width = 9
self.hexchar = [None] * len(hex_strings) * width
for ni, c in enumerate(hex_strings):
for nii in range(0, width):
X, self.hexchar[ni * width + nii] = self.make_feat(X, c, 'hexchar%d' % nii, get_charnum,
is_float=False, i=nii)
#
def hex_to_int(x):
x_int = int(eval('0x' + str(x)))
return x_int
self.hexints = [None] * len(hex_strings)
for ni, c in enumerate(hex_strings):
X, self.hexints[ni] = self.make_feat(X, c, 'hex2int', hex_to_int)
#
if False: # ValueError: could not convert string to float: b'\x05\x0f\x11k\xcf'
def hex_to_string(x):
try:
x_str = codecs.decode('0' + x, 'hex')
except:
x_str = codecs.decode(x, 'hex')
return x_str
self.hexstr = [None] * len(hex_strings)
for ni, c in enumerate(hex_strings):
X, self.hexstr[ni] = self.make_feat(X, c, 'hex2str', hex_to_string, is_float=False)
def bin012a(x):
return bool(x[0]) & bool(x[1]) & bool(x[2])
X, self.bin012a = self.make_feat(X, ['bin_0', 'bin_1', 'bin_2'], 'bin012a', bin012a)
def bin012b(x):
return (bool(x[0]) ^ bool(x[1])) ^ bool(x[2])
X, self.bin012b = self.make_feat(X, ['bin_0', 'bin_1', 'bin_2'], 'bin012b', bin012b)
def bin012c(x):
return bool(x[0]) ^ (bool(x[1]) ^ bool(x[2]))
X, self.bin012c = self.make_feat(X, ['bin_0', 'bin_1', 'bin_2'], 'bin012c', bin012c)
# TODO: manual OHE fixed width for out of 16 digits always (not sure all rows lead to all values)
# one-hot encode text by each character
# use geo-location for nom_3
# use static mapping encoding for ord_2 and ord_1
def ord12num1(x):
# ordered label
d = {'Novice': 0, 'Contributor': 1, 'Expert': 2, 'Master': 3, 'Grandmaster': 4}
return d[x]
X, self.kaggle1 = self.make_feat(X, 'ord_1', 'kaggle1', ord12num1)
def ord12num2(x):
# medals total
d = {'Novice': 0, 'Contributor': 0, 'Expert': 2, 'Master': 3, 'Grandmaster': 6}
return d[x]
X, self.kaggle2 = self.make_feat(X, 'ord_1', 'kaggle2', ord12num2)
def ord1master(x):
return 1 if 'master' in x or 'Master' in x else 0
X, self.kaggle3 = self.make_feat(X, 'ord_1', 'kaggle3', ord1master)
def ord22num(x):
# ordered label
d = {'Freezing': 0, 'Cold': 1, 'Warm': 2, 'Hot': 3, 'Boiling Hot': 4, 'Lava Hot': 5}
return d[x]
X, self.temp1 = self.make_feat(X, 'ord_2', 'temp1', ord22num)
def ord22num2(x):
# temp in F
d = {'Freezing': 32, 'Cold': 50, 'Warm': 80, 'Hot': 100, 'Boiling Hot': 212, 'Lava Hot': 1700}
return d[x]
X, self.temp2 = self.make_feat(X, 'ord_2', 'temp2', ord22num2)
def ord2hot(x):
return 1 if 'hot' in x or 'Hot' in x else 0
X, self.temp4 = self.make_feat(X, 'ord_2', 'temp4', ord2hot)
# lower ord_5
def ord5more0(x):
return x.lower()
X, self.ord5more0 = self.make_feat(X, 'ord_5', 'more0', ord5more0, is_float=False)
# 1st char, keep for OHE
def ord5more1(x):
return x[0]
X, self.ord5more1 = self.make_feat(X, 'ord_5', 'more1', ord5more1, is_float=False)
# 2nd char, keep for OHE
def ord5more2(x):
return x[1]
X, self.ord5more2 = self.make_feat(X, 'ord_5', 'more2', ord5more2, is_float=False)
# 1st char, keep for OHE
def ord5more3(x):
return x[0].lower()