-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathtext_topic_modeling_transformer.py
54 lines (46 loc) · 2.26 KB
/
text_topic_modeling_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
"""Extract topics from text column using LDA"""
import datatable as dt
import numpy as np
from h2oaicore.transformer_utils import CustomTransformer
from h2oaicore.separators import orig_feat_prefix, extra_prefix
class TextLDATopicTransformer(CustomTransformer):
_unsupervised = True
"""Transformer to extract topics from text column using LDA"""
_is_reproducible = False
_testing_can_skip_failure = False # ensure tested as if shouldn't fail
_modules_needed_by_name = ["gensim==4.3.2"]
def __init__(self, n_topics, **kwargs):
super().__init__(**kwargs)
self.n_topics = n_topics
@staticmethod
def get_default_properties():
return dict(col_type="text", min_cols=1, max_cols=1, relative_importance=1)
@staticmethod
def get_parameter_choices():
return {"n_topics": [3, 5, 10, 50]}
def fit_transform(self, X: dt.Frame, y: np.array = None):
import gensim
from gensim import corpora
X = dt.Frame(X)
new_X = X.to_pandas().astype(str).fillna("NA").iloc[:, 0].values
new_X = [doc.split() for doc in new_X]
self.dictionary = corpora.Dictionary(new_X)
new_X = [self.dictionary.doc2bow(doc) for doc in new_X]
self.model = gensim.models.ldamodel.LdaModel(new_X,
num_topics=self.n_topics,
id2word=self.dictionary,
passes=10,
random_state=2019)
return self.transform(X)
def transform(self, X: dt.Frame):
X = dt.Frame(X)
orig_col_name = X.names[0]
new_X = X.to_pandas().astype(str).fillna("NA").iloc[:, 0].values
new_X = [doc.split() for doc in new_X]
new_X = [self.dictionary.doc2bow(doc) for doc in new_X]
new_X = self.model.inference(new_X)[0]
self._output_feature_names = [f'{self.display_name}{orig_feat_prefix}{orig_col_name}{extra_prefix}topic{i}'
for i in range(new_X.shape[1])]
self._feature_desc = [f'LDA Topic {i} of {self.n_topics} for {orig_col_name} column' for i in
range(new_X.shape[1])]
return new_X