-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathh2o-3-coxph-pretransformer.py
200 lines (168 loc) · 8.16 KB
/
h2o-3-coxph-pretransformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"""Pre-transformer utilizing survival analysis modeling using CoxPH (Cox proportional hazard)
using H2O-3 CoxPH function.
It adds risk score produced by CoxPH model and drops stop_column feature used for
survival modeling along with actual target as event."""
from h2oaicore.transformer_utils import CustomTransformer
import datatable as dt
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
import os
import uuid
_global_modules_needed_by_name = ['h2o==3.46.0.6']
import h2o
from h2oaicore.systemutils import temporary_files_path, config, remove
from h2o.estimators.coxph import H2OCoxProportionalHazardsEstimator
from h2oaicore.systemutils import make_experiment_logger, loggerinfo, loggerwarning
from h2oaicore.separators import extra_prefix, orig_feat_prefix
class SurvivalCoxPHPreTransformer(CustomTransformer):
# only works with binomial problem for now
_regression = False
_binary = True
_multiclass = False
_numeric_output = False
_can_be_pretransformer = True
_default_as_pretransformer = True
_must_be_pretransformer = True
_only_as_pretransformer = True
_unsupervised = False # uses target
_uses_target = True # uses target
# Duration (stop) column name
_stop_column_name = "surv_days"
_ignored_columns = None
_survival_event = '__event__'
def __init__(self, context=None, ties="breslow", max_iterations=20, **kwargs):
super().__init__(context=context, **kwargs)
self.ties = ties
self.max_iterations = max_iterations
self.id = None
self.raw_model_bytes = None
self.my_log_dir = os.path.abspath(os.path.join(temporary_files_path,
config.contrib_relative_directory, "h2o_log"))
if not os.path.isdir(self.my_log_dir):
os.makedirs(self.my_log_dir, exist_ok=True)
@staticmethod
def get_default_properties():
return dict(col_type="all", min_cols="all", max_cols="all", relative_importance=1)
@staticmethod
def get_parameter_choices():
return {
"ties": ["breslow", "efron"],
"max_iterations": [10, 20, 30]
}
def fit_transform(self, X: dt.Frame, y: np.array = None, **kwargs):
X_original = X
X = X[:, dt.f[int].extend(dt.f[float]).extend(dt.f[bool]).extend(dt.f[str])]
if hasattr(self, 'runcount'):
self.run_count += 1
else:
self.run_count = 0
# Get the logger if it exists
logger = None
if self.context and self.context.experiment_id:
logger = make_experiment_logger(
experiment_id=self.context.experiment_id,
tmp_dir=self.context.tmp_dir,
experiment_tmp_dir=self.context.experiment_tmp_dir,
username=self.context.username,
)
survival_event = self.__class__._survival_event
if survival_event in X.names:
raise ValueError("Consider renaming feature '{}'.".format(survival_event))
# bind y to X to use as event in CoxPH
X[:, survival_event] = np.array(LabelEncoder().fit_transform(y))
# sanity check that target is binary
if X[survival_event].nunique()[0, 0] != 2:
raise ValueError(
"Too many values {} in event column - must be exactly 2.".format(X[survival_event].nunique()[0, 0]))
# redress target values into 0, 1
event_max = X[survival_event].max()[0, 0]
X[dt.f[survival_event] != event_max, survival_event] = 0
X[dt.f[survival_event] == event_max, survival_event] = 1
stop_column_name = self.__class__._stop_column_name
ignored_columns = self.__class__._ignored_columns
if stop_column_name is None:
raise ValueError("Stop column name can't be null.")
main_message = "Survival Analysis CoxPH pre-transformer will use event '{}' and time '{}' columns.". \
format(survival_event, stop_column_name)
# in accpetance test simply return input X
if stop_column_name not in X.names:
loggerwarning(logger,
"Survival Analysis CoxPH pre-transformer found no time column '{}'.".format(stop_column_name))
return X_original
if not X[:, stop_column_name].stype in [dt.bool8, dt.int8, dt.int16, dt.int32, dt.int64, dt.float32,
dt.float64]:
raise ValueError("Stop column `{}' type must be numeric, but found '{}'".
format(stop_column_name, X[:, stop_column_name].stype))
# remove stop column from X
del X_original[:, stop_column_name]
self._output_feature_names = list(X_original.names)
self._feature_desc = list(X_original.names)
if self.run_count == 0 and self.context and self.context.experiment_id:
loggerinfo(logger, main_message)
task = kwargs.get('task')
if task and main_message is not None:
task.sync(key=self.context.experiment_id, progress=dict(type='update', message=main_message))
task.flush()
# Validate CoxPH requirements on stop column
if X[stop_column_name].min()[0, 0] < 0:
X[dt.f[stop_column_name] < 0, stop_column_name] = 0
loggerwarning(logger, "Stop column can't be negative: replaced negative values with 0.")
if X[stop_column_name].countna()[0, 0] > 0:
X[dt.isna(dt.f[stop_column_name]), stop_column_name] = 0
loggerwarning(logger, "Stop column can't contain NULLs: replaced NULL with 0.")
h2o.init(port=config.h2o_recipes_port, log_dir=self.my_log_dir)
model = H2OCoxProportionalHazardsEstimator(stop_column=stop_column_name,
ties=self.ties,
max_iterations=self.max_iterations)
frame = h2o.H2OFrame(X.to_pandas())
model_path = None
risk_frame = None
try:
model.train(y=survival_event, training_frame=frame, ignored_columns=ignored_columns)
self.id = model.model_id
model_path = os.path.join(temporary_files_path, "h2o_model." + str(uuid.uuid4()))
model_path = h2o.save_model(model=model, path=model_path)
with open(model_path, "rb") as f:
self.raw_model_bytes = f.read()
risk_frame = model.predict(frame)
X_original[:, "risk_score_coxph_{}_{}".format(self.ties, self.max_iterations)] = risk_frame.as_data_frame(
header=False)
self._output_feature_names.append(
f"{self.display_name}{orig_feat_prefix}riskscore_coxph{extra_prefix}{self.ties}_{self.max_iterations}")
self._feature_desc.append(f"CoxPH model risk score [ties={self.ties}, max.iter={self.max_iterations}")
return X_original
finally:
if model_path is not None:
remove(model_path)
h2o.remove(model)
h2o.remove(frame)
if risk_frame is not None:
h2o.remove(risk_frame)
def transform(self, X: dt.Frame):
stop_column_name = self.__class__._stop_column_name
if stop_column_name in X.names:
del X[:, stop_column_name]
else:
return X
if self.id is None:
return X
# self._output_feature_names = list(X.names)
# self._feature_desc = list(X.names)
h2o.init(port=config.h2o_recipes_port, log_dir=self.my_log_dir)
model_path = os.path.join(temporary_files_path, self.id)
with open(model_path, "wb") as f:
f.write(self.raw_model_bytes)
model = h2o.load_model(os.path.abspath(model_path))
remove(model_path)
frame = h2o.H2OFrame(X.to_pandas())
try:
risk_frame = model.predict(frame)
X[:, "risk_score_coxph_{}_{}".format(self.ties, self.max_iterations)] = risk_frame.as_data_frame(
header=False)
return X
finally:
h2o.remove(self.id)
h2o.remove(frame)
if risk_frame is not None:
h2o.remove(risk_frame)