-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset_composed.py
60 lines (49 loc) · 2.75 KB
/
dataset_composed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
from pathlib import Path
import argparse
from utils import load_from_file, save_to_file
from dataset_symbolic import save_split_dataset_new
def construct_composed_dataset(data_fpath, composed_fpath):
"""
Construct composed split datasets for zero shot transfer, utterance and formula holdout.
"""
dataset = load_from_file(data_fpath)
dataset["train_iter"].extend(dataset["valid_iter"]) # all base dataset used for train
dataset["train_meta"].extend(dataset["valid_meta"])
composed = load_from_file(composed_fpath)
if "zeroshot" in composed_fpath:
holdout_type = "zeroshot"
# Train on all base utts, ltls; test on composed utts
dataset["valid_iter"] = composed["data"]
dataset["valid_meta"] = composed["meta"]
dataset["holdout_type"] = holdout_type
save_dpatph = os.path.join("data", f"composed_{holdout_type}")
os.makedirs(save_dpatph, exist_ok=True)
save_fpath = os.path.join(save_dpatph, f"{Path(composed_fpath).stem}.pkl")
save_to_file(dataset, save_fpath)
elif "utt" in composed_fpath:
holdout_type = "utt"
save_dpatph = os.path.join("data", f"composed_{holdout_type}")
os.makedirs(save_dpatph, exist_ok=True)
for train_data, train_meta, valid_data, valid_meta, info in composed:
size, seed = info["size"], info["seed"]
save_fname = f"{Path(composed_fpath).stem}_{size}_{seed}.pkl"
split_fpath = os.path.join(save_dpatph, save_fname)
save_split_dataset_new(split_fpath, train_data, train_meta, valid_data, valid_meta, info)
elif "formula" in composed_fpath:
holdout_type = "formula"
save_dpatph = os.path.join("data", f"composed_{holdout_type}")
os.makedirs(save_dpatph, exist_ok=True)
for train_data, train_meta, valid_data, valid_meta, info in composed:
size, seed, fold_idx = info["size"], info["seed"], info["fold_idx"]
save_fname = f"{Path(composed_fpath).stem}_{size}_{seed}_fold{fold_idx}.pkl"
split_fpath = os.path.join(save_dpatph, save_fname)
save_split_dataset_new(split_fpath, train_data, train_meta, valid_data, valid_meta, info)
else:
raise ValueError(f"ERROR: unrecognized holdout type in compose_fpath: {composed_fpath}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_fpath", type=str, default="data/holdout_split_batch12_perm/symbolic_batch12_perm_utt_0.2_0.pkl", help="original symbolic dataset.")
parser.add_argument("--composed_fpath", type=str, default="data/composed_utt_symbolic_batch12_noperm.pkl", help="composed dataset.")
args = parser.parse_args()
construct_composed_dataset(args.data_fpath, args.composed_fpath)