-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval.py
219 lines (191 loc) · 10.9 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""
Evaluation functions for full translation, symbolic translation, RER and trajectory.
"""
import os
import logging
from collections import defaultdict
import numpy as np
import spot
from dataset_lifted import load_split_dataset
from utils import load_from_file, save_to_file, name_to_prop, substitute_single_word
def evaluate_lang2ltl(true_ltls, out_ltls, true_names, out_names, out_grnds, convert_rule, all_props):
accs = []
for true_ltl, out_ltl, true_name, out_name, out_grnd in zip(true_ltls, out_ltls, true_names, out_names, out_grnds):
if out_ltl == true_ltl: # Spot cannot handle long but correct LTL formula, e.g. F & 62_on_the_park U 62_on_the_park & ! 62_on_the_park U ! 62_on_the_park F & 62_on_the_park U 62_on_the_park & ! 62_on_the_park U ! 62_on_the_park F & 62_on_the_park U 62_on_the_park & ! 62_on_the_park U ! 62_on_the_park F 62_on_the_park
is_correct = "True"
else:
try: # output LTL formula may have syntax error
spot_correct = spot.are_equivalent(spot.formula(true_ltl), spot.formula(out_ltl))
is_correct = "True" if spot_correct else "False"
except SyntaxError:
logging.info(f"Syntax error OR formula too long:\n{true_ltl}\n{out_ltl}")
# breakpoint()
if set(true_name) == set(out_grnd):
true_props = [name_to_prop(name, convert_rule) for name in true_name]
true_sub_map = {prop: sym for prop, sym in zip(true_props, all_props[:len(true_props)])}
true_ltl_short = substitute_single_word(true_ltl, true_sub_map)[0]
out_props = [name_to_prop(name, convert_rule) for name in true_name]
out_sub_map = {prop: sym for prop, sym in zip(out_props, all_props[:len(out_props)])}
out_ltl_short = substitute_single_word(out_ltl, out_sub_map)[0]
logging.info(f"shorten LTLs:\n{true_ltl_short}\n{out_ltl_short}\n")
try: # output LTL formula may have syntax error
spot_correct = spot.are_equivalent(spot.formula(true_ltl_short), spot.formula(out_ltl_short))
is_correct = "True" if spot_correct else "False"
except SyntaxError:
logging.info(f"Syntax error:\n{true_ltl_short}\n{out_ltl_short}\n")
# breakpoint()
is_correct = "Syntax Error"
else:
is_correct = "RER or Grounding Error"
accs.append(is_correct)
acc = np.mean([True if acc == "True" else False for acc in accs])
return accs, acc
def evaluate_grounded_ltl(true_ltls, out_ltls, string_match=False):
accs = []
for true_ltl, out_ltl in zip(true_ltls, out_ltls):
if true_ltl == out_ltl: # TODO: Spot cannot handle long but correct LTL formula, e.g. F & 62_on_the_park U 62_on_the_park & ! 62_on_the_park U ! 62_on_the_park F & 62_on_the_park U 62_on_the_park & ! 62_on_the_park U ! 62_on_the_park F & 62_on_the_park U 62_on_the_park & ! 62_on_the_park U ! 62_on_the_park F 62_on_the_park
is_correct = "True"
elif string_match:
is_correct = "False"
else:
try: # output LTL formula may have syntax error
spot_correct = spot.are_equivalent(spot.formula(true_ltl), spot.formula(out_ltl))
is_correct = "True" if spot_correct else "False"
except SyntaxError:
is_correct = "Syntax Error"
logging.info(f"Syntax error:\n{true_ltl}\n{out_ltl}\n")
except TypeError:
logging.info(f"Type error:\n{true_ltl}\n{out_ltl}\n")
breakpoint()
accs.append(is_correct)
acc = np.mean([True if acc == "True" else False for acc in accs])
return accs, acc
def evaluate_lang_new(true_ltls, out_ltls, true_sym_ltls, out_sym_ltls, true_names, out_names, out_grnds):
accs = []
for true_ltl, out_ltl, true_sym_ltl, out_sym_ltl, true_name, out_name, out_grnd in zip(true_ltls, out_ltls, true_sym_ltls, out_sym_ltls, true_names, out_names, out_grnds):
if true_ltl == out_ltl:
is_correct = "True"
else:
try: # output LTL formula may have syntax error
spot_correct = spot.are_equivalent(spot.formula(true_sym_ltl), spot.formula(out_sym_ltl))
if spot_correct:
if set(true_name) == set(out_name): # TODO: check only work if RE == lmk_name when generate grounded dataset
if set(true_name) == set(out_grnd):
is_correct = "True"
else:
is_correct = "Grounding Error"
else:
is_correct = "RER Error"
else:
is_correct = "Symbolic Translation Error"
if set(true_name) != set(out_name):
is_correct += " | RER Error"
if set(true_name) != set(out_grnd):
is_correct += " | Grounding Error"
except SyntaxError:
logging.info(f"Syntax error: {true_sym_ltl}\n{out_sym_ltl}\n")
is_correct = "Syntax Error"
accs.append(is_correct)
acc = np.mean([True if acc == "True" else False for acc in accs])
return accs, acc
def evaluate_sym_trans(model, split_dataset_fpath, result_log_fpath, analysis_fpath, acc_fpath, batch_size=100):
"""
Evaluate symbolic translation with type constrained decoding (TCD).
"""
def batchify(dataset, batch_size):
for batch_start_idx in range(0, len(dataset), batch_size):
yield dataset[batch_start_idx: batch_start_idx + batch_size]
_, _, valid_iter, valid_meta = load_split_dataset(split_dataset_fpath)
result_log = [["train_or_valid", "pattern_type", "nprops", "prop_perm", "utterances", "true_ltl", "output_ltl", "is_correct"]]
meta2accs = defaultdict(list)
nsamples, ncorrects = 0, 0
batches = batchify(list(zip(valid_iter, valid_meta)), batch_size)
for batch_idx, batch in enumerate(batches):
utts = [utt_ltl[0] for utt_ltl, _ in batch]
out_ltls = model.translate(utts)
for idx, ((utt, true_ltl), (pattern_type, props, *other_meta)) in enumerate(batch):
out_ltl = out_ltls[idx].strip()
try: # output LTL formula may have syntax error
is_correct = spot.are_equivalent(spot.formula(out_ltl), spot.formula(true_ltl))
is_correct = "True" if is_correct else "False"
except SyntaxError:
out_ltl = model.type_constrained_decode([utt])[0].strip()
try:
is_correct = spot.are_equivalent(spot.formula(out_ltl), spot.formula(true_ltl))
is_correct = "True" if is_correct else "False"
except SyntaxError:
is_correct = "Syntax Error"
nprops = len(props)
meta2accs[(pattern_type, tuple(props))].append(is_correct)
result_log.append(["valid", pattern_type, nprops, props, utt, true_ltl, out_ltl, is_correct])
nsamples += 1
if is_correct == "True":
ncorrects += 1
logging.info(f"{nsamples}/{len(valid_iter)}\nPartial result: {ncorrects}/{nsamples} = {ncorrects / nsamples}")
logging.info(f"{pattern_type} | {nprops} {props}\n{utt}\n{true_ltl}\n{out_ltl}\n{is_correct}\n")
save_to_file(result_log, result_log_fpath)
meta2acc = {meta: np.mean([True if acc == "True" else False for acc in accs]) for meta, accs in meta2accs.items()}
logging.info(meta2acc)
# if os.path.exists(analysis_fpath): # TODO: only works for base dataset
# analysis = load_from_file(analysis_fpath)
# acc_anaysis = [["LTL Type", "Number of Propositions", "Number of Utterances", "Accuracy"]]
# for pattern_type, nprops, nutts in analysis:
# pattern_type = "_".join(pattern_type.lower().split())
# meta = (pattern_type, int(nprops))
# if meta in meta2acc:
# acc_anaysis.append([pattern_type, nprops, nutts, meta2acc[meta]])
# else:
# acc_anaysis.append([pattern_type, nprops, nutts, "no valid data"])
# save_to_file(acc_anaysis, acc_fpath)
total_acc = np.mean([True if acc == "True" else False for accs in meta2accs.values() for acc in accs])
logging.info(f"Total validation accuracy: {total_acc}")
return meta2acc, total_acc
def aggregate_results(result_fpaths, filter_types):
"""
Aggregate accuracy-per-formula results from K-fold cross validation or multiple random seeds.
Assume files have same columns (LTL Type, Number of Propositions, Number of Utterances, Accuracy)
and same values for first 3 columns.
:param result_fpaths: paths to results file to be aggregated
"""
total_corrects, total_samples = 0, 0
accs = []
meta2stats = defaultdict(list)
for n, result_fpath in enumerate(result_fpaths):
result = load_from_file(result_fpath, noheader=True)
print(result_fpath)
corrects, samples = 0, 0
for row_idx, row in enumerate(result):
pattern_type, nprops, nutts, acc = row
if pattern_type not in filter_types and acc != "no valid data":
nprops, nutts, acc = int(nprops), int(nutts), float(acc)
meta2stats[(pattern_type, nprops)].append((nutts*acc, nutts))
corrects += nutts * acc
samples += nutts
total_corrects += corrects
total_samples += samples
accs.append(corrects / samples)
result_aux = load_from_file(result_fpaths[0], noheader=False)
fields = result_aux.pop(0)
aggregated_result = [fields]
for row in result_aux:
aggregated_result.append(row[:3] + [0.0])
for row_idx, (pattern_type, nprops, nutts, _) in enumerate(aggregated_result[1:]):
nprops, nutts = int(nprops), int(nutts)
stats = meta2stats[(pattern_type, nprops)]
corrects = sum([corrects_formula for corrects_formula, _ in stats])
nutts = sum([nutts_formula for _, nutts_formula in stats])
acc = corrects / nutts if nutts != 0 else "no valid data"
aggregated_result[row_idx+1] = [pattern_type, nprops, nutts, acc]
result_fnames = [os.path.splitext(result_fpath)[0] for result_fpath in result_fpaths]
aggregated_result_fpath = f"{os.path.commonprefix(result_fnames)}_aggregated.csv"
save_to_file(aggregated_result, aggregated_result_fpath)
accumulated_acc = total_corrects / total_samples
accumulated_std = np.std(accs)
print(f"total accuracy: {accumulated_acc}")
print(f'standard deviation: {accumulated_std}')
return accumulated_acc, accumulated_std
def evaluate_rer(out_lmks_str, true_lmks):
out_lmks = out_lmks_str.split(" | ")
return set(out_lmks) == set(true_lmks)
def evaluate_plan(out_traj, true_traj):
return out_traj == true_traj