Skip to content

Latest commit

 

History

History
275 lines (215 loc) · 8.5 KB

Readme.md

File metadata and controls

275 lines (215 loc) · 8.5 KB

platform-ref-castai

This repository defines a Crossplane configuration package that demonstrates provisioning and using CAST AI.

Composition Overview

The example platform supports the use case of

  • ReadOnly Mode
  • FullAccess Mode

The Infrastructure team deploys and manages the CAST AI infrastructure using the following Compositions:

    flowchart LR
    subgraph "Cluster Scoped"
        direction LR
        XR("XReadOnly")
        MR1("Managed Resource \n(ekscluster.castai.upbound.io)")
        MR2("Managed Resouce \n castai-agent \n(release.helm.crossplane.io)")
        MR3("Secret \n name: castai-sample \n namespace: crossplane-system")
    end
    XR --> |"spec.resourceRef"| MR1 --> |"spec.writeConnectionSecretToRef"| MR3
    XR --> |"spec.resourceRef"| MR2 --> |".valueFrom.secretKeyRef.name"| MR3
Loading
    flowchart LR
    subgraph "Cluster Scoped"
        direction LR
        XR("XFullAccess")
        MR1("XR\n(xreadonly.aws.castai.io)")
        MR2("Managed Resource \n(eksclusterid.castai.upbound.io)")
        MR3("Managed Resouce \n castai-cluster-controller \n(release.helm.crossplane.io)")
        MR4("Managed Resouce \n castai-evictor \n(release.helm.crossplane.io)")
        MR5("Managed Resouce \n castai-spot-handler \n(release.helm.crossplane.io)")
        MR6("Secret \n name: castai-sample \n namespace: crossplane-system")
        MR7("Managed Resource \n(awsuserarn.castai.upbound.io)")
        MR8("Managed Resource \n(nodeconfiguration.castai.upbound.io)")
        MR9("Managed Resource \n(nodeconfigurationdefault.castai.upbound.io)")
        MR10("Managed Resource \n AssumeRole \n(role.iam.aws.upbound.io)")
        MR11("Managed Resource \n(rolepolicyattachment.iam.aws.upbound.io)")
        MR12("Managed Resource \n(rolepolicyattachment.iam.aws.upbound.io)")
        MR13("Managed Resource \n(policy.iam.aws.upbound.io)")
        MR14("Managed Resource \n(rolepolicyattachment.iam.aws.upbound.io)")
        MR15("Managed Resource \n(policy.iam.aws.upbound.io)")
        MR16("Managed Resource \n(rolepolicyattachment.iam.aws.upbound.io)")
        MR17("Managed Resource \n InstanceRole \n(role.iam.aws.upbound.io)")
        MR18("Managed Resource \n(rolepolicyattachment.iam.aws.upbound.io)")
        MR19("Managed Resource \n(rolepolicyattachment.iam.aws.upbound.io)")
        MR20("Managed Resource \n(rolepolicyattachment.iam.aws.upbound.io)")
        MR21("Managed Resource \n(instanceprofile.iam.aws.upbound.io)")

    end
    XR --> |"spec.resourceRef"| MR1
    XR --> |"spec.resourceRef"| MR2 --> |"input"| MR7
    XR --> |"spec.resourceRef"| MR3 --> |".valueFrom.secretKeyRef.name"| MR6
    XR --> |"spec.resourceRef"| MR4 --> |".valueFrom.secretKeyRef.name"| MR6
    XR --> |"spec.resourceRef"| MR5 --> |".valueFrom.secretKeyRef.name"| MR6
    XR --> |"spec.resourceRef"| MR7 --> |"input"| MR10
    XR --> |"spec.resourceRef"| MR8
    XR --> |"spec.resourceRef"| MR9
    XR --> |"spec.resourceRef"| MR10
    XR --> |"spec.resourceRef"| MR11 --> |"selector"| MR10
    XR --> |"spec.resourceRef"| MR12 --> |"selector"| MR10
    XR --> |"spec.resourceRef"| MR13 --> |"selector"| MR14
    XR --> |"spec.resourceRef"| MR14 --> |"selector"| MR10
    XR --> |"spec.resourceRef"| MR15 --> |"selector"| MR16
    XR --> |"spec.resourceRef"| MR16 --> |"selector"| MR10
    XR --> |"spec.resourceRef"| MR17
    XR --> |"spec.resourceRef"| MR18 --> |"selector"| MR17
    XR --> |"spec.resourceRef"| MR19 --> |"selector"| MR17
    XR --> |"spec.resourceRef"| MR20 --> |"selector"| MR17
    XR --> |"spec.resourceRef"| MR21 --> |"selector"| MR17
Loading

Deploying the Reference Platform

First you will need access to a Kubernetes cluster. Ensure you are using the correct context:

kubectl config current-context

To install Crossplane run:

helm repo add crossplane-stable https://charts.crossplane.io/stable
helm repo update
helm install crossplane \
--namespace crossplane-system \
--create-namespace crossplane-stable/crossplane 

Install the required Providers:

kubectl apply -f examples/providers.yaml

You can keep track of the provider install:

kubectl get -f examples/providers.yaml

Next, install the CompositeResourceDefinitions and Compositions:

kubectl apply -f apis/XFullAccess -f apis/XReadOnly

The Custom Platform APIs are Kubernetes CompositeResourceDefinition objects or XRD for short. We can list them using kubectl:

kubectl get xrd

The following XRDs should be ESTABLISHED and OFFERED:

NAME                      ESTABLISHED   OFFERED   AGE
xfullaccess.aws.cast.ai   True                    5m
xreadonly.aws.cast.ai     True                    5m

Authenticating to AWS

Now that Crossplane, the Provider and all the Compositions are installed we need to give the provider AWS credentials. This is done by creating a ProviderConfig.

kubectl create secret generic aws-creds -n crossplane-system --from-file=creds=./creds.conf

Configure the Provider with AWS Credentials

We will create the following ProviderConfig object to use the AWS credentials from the previous step. See AUTHENTICATION for more authentication options like IRSA.

apiVersion: aws.upbound.io/v1beta1
kind: ProviderConfig
metadata:
  name: default
spec:
  credentials:
    source: Secret
    secretRef:
      namespace: crossplane-system
      name: aws-creds
      key: creds

Authenticating to CAST AI

Now that Crossplane, the Provider and all the Compositions are installed we need to give the provider CAST AI credentials. This is done by creating a ProviderConfig.

kubectl create secret generic castai-creds -n crossplane-system --from-file=credentials=./castai.json

Configure the Provider with CAST AI Credentials

We will create the following ProviderConfig object to use the CAST AI credentials

apiVersion: castai.upbound.io/v1beta1
kind: ProviderConfig
metadata:
  name: default
spec:
  credentials:
    source: Secret
    secretRef:
      namespace: crossplane-system
      name: castai-creds
      key: credentials

Authenticating to Kubernetes Cluster

Now that Crossplane, the Provider and all the Compositions are installed we need to give the provider helm RBAC access. This is done by creating a ProviderConfig.

Make sure provider-helm has enough permissions to install your chart into cluster We can give admin permissions by running:

SA=$(kubectl -n crossplane-system get sa -o name | grep provider-helm | sed -e 's|serviceaccount\/|crossplane-system:|g')
kubectl create clusterrolebinding provider-helm-admin-binding --clusterrole cluster-admin --serviceaccount="${SA}"

Configure the Provider Helm with Kubernetes ServiceAccount RBAC

We will create the following ProviderConfig object to use the CAST AI credentials

apiVersion: helm.crossplane.io/v1beta1
kind: ProviderConfig
metadata:
  name: default
spec:
  credentials:
    source: InjectedIdentity

Deploy all ProviderConfigs

kubectl apply -f examples/providerconfig-creds.yaml

We're now ready to deploy the examples.

Using files in the examples directory:

kubectl apply -f examples/XReadOnly.yaml
kubectl apply -f examples/XFullAccess.yaml

Applying the examples to the cluster would create Kubernetes objects similar to the following:

kubectl get xreadonly
NAME               SYNCED   READY   COMPOSITION             AGE
sample-read-only   True     True    xreadonly.aws.cast.ai   5s
kubectl get xfullaccess
NAME    SYNCED   READY  COMPOSITION              AGE
sample  True     True   xfullaccess.aws.cast.ai   5s

Cleaning Up

To Clean up the installation, run the following commands:

kubectl delete -f examples/XReadOnly.yaml -f examples/XFullAccess.yaml

Wait for all the cloud resources to be deleted:

kubectl get managed

Delete the Compositions, Providers, and ProviderConfig after all the resources have been deleted.

kubectl delete -f apis/XReadOnly -f apis/XFullAccess
kubectl delete -f examples/providers.yaml
kubectl delete -f examples/providerconfig-creds.yaml
kubectl delete secret -n crossplane-system aws-creds
kubectl delete secret -n crossplane-system castai-creds

Questions?

For any questions, thoughts and comments don't hesitate to reach out or drop by slack.crossplane.io, and say hi to haarchri!