-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmvnormpdf.m
24 lines (23 loc) · 1.24 KB
/
mvnormpdf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
function p = mvnormpdf(varargin)
%MVNORMPDF Multivariate normal probability density function.
% MVNORMPDF(x) returns a row vector giving the density at each column of x
% under a standard multivariate normal.
% MVNORMPDF(x,m) subtracts m from x first.
% If cols(m) == 1, subtracts m from each column of x.
% If cols(m) == cols(x), subtracts corresponding columns.
% If cols(x) == 1, x is repeated to match cols(m).
% MVNORMPDF(x,m,S) specifies the standard deviation, or more generally
% an upper triangular Cholesky factor of the covariance matrix.
% In the univariate case, multiple standard deviations can be specified.
% If m is empty, no subtraction is done (zero mean).
% MVNORMPDF(x,m,[],V) specifies the variance or covariance matrix.
% MVNORMPDF(x,m,'inv',iV) specifies the inverse of the covariance matrix, i.e.
% the precision matrix.
% MVNORMPDF(x,m,iS,'inv') specifies the reciprocal of the standard deviation,
% or more generally the upper triangular Cholesky factor of the
% inverse covariance matrix.
% This is the most efficient option.
% See test_normpdf for a timing test.
% this may look strange, but computing normpdf directly is no faster or
% more stable than exp(mvnormpdfln).
p = exp(mvnormpdfln(varargin{:}));