Elasticsearch bundle requires mapping definitions for it to work with complex operations, like insert and update documents, do a full-text search, etc.
In order for the app's classes to be mapped a fake bundle with the name App
is added. This is not a perfect solution but was the easiest to implement and add support for it.
It requires a class in the project's source root folder.
By default, the App\Kernel
class is used. This class can be changed to any other class by using the configuration:
ongr_elasticsearch:
app_root_class: 'App\YourKernel'
The referenced class has to exist as it is used with various ReflectionClass instances to find their folder etc., but can otherwise be empty. If the class does not exist, no mappings for App
can be configured.
Here's an example of configuration containing the definitions of filter and analyzer:
ongr_elasticsearch:
analysis:
filter:
incremental_filter:
type: edge_ngram
min_gram: 1
max_gram: 20
analyzer:
incrementalAnalyzer: #-> analyzer name
type: custom
tokenizer: standard
filter:
- lowercase
- incremental_filter
managers:
default:
index:
index_name: your_index_name
hosts:
- 127.0.0.1:9200
mappings:
- App
From 5.0 version mapping was enchased, and now you can change documents directory. See the example below:
#...
managers:
custom_dir:
index:
index_name: your_index_name
hosts:
- 127.0.0.1:9200
mappings:
App: ~ #Document dir will be Document.
CustomBundle:
document_dir: Entity #For this bundle will search documents in the Entity.
default:
index:
index_name: your_index_name
hosts:
- 127.0.0.1:9200
mappings:
- App
Both mappings are valid. In the above example, you can change the directory for the particular bundles where to find documents. Default dir remains
Document
.
At the very top, you can see analysis
node. It represents Elasticsearch analysis.
You can define here analyzers, tokenizers, token filters and character filters.
Once you define any analysis, then it can be used in any document mapping.
e.g. let's say you want to use incremental analyzer and custom lowercase filter analyzer in your index. The elasticsearch settings mapping would like this:
//PUT my_index
{
"settings": {
"analysis": {
"filter": {
"incremental_filter": {
"type": "edge_ngram",
"min_gram": "1",
"max_gram": "100"
}
},
"analyzer": {
"keywordAnalyzer": {
"filter": [
"lowercase"
],
"type": "custom",
"tokenizer": "keyword"
},
"incrementalAnalyzer": {
"filter": [
"lowercase",
"asciifolding",
"incremental_filter"
],
"type": "custom",
"tokenizer": "standard"
}
}
}
}
}
The representation of this particular example in the elasticsearch configuration:
ongr_elasticsearch:
analysis:
analyzer:
keywordAnalyzer:
type: custom
tokenizer: keyword
filter: [lowercase]
incrementalAnalyzer:
type: custom
tokenizer: standard
filter:
- lowercase
- asciifolding
- incremental_filter
filter:
incremental_filter:
type: edge_ngram
min_gram: 1
max_gram: 100
managers:
default:
index:
index_name: your_index_name
hosts:
- 127.0.0.1:9200
mappings:
- App
Lets start with a document class example.
// src/App/Document/Content.php
namespace App\Document;
use ONGR\ElasticsearchBundle\Annotation as ES;
/**
* @ES\Document(type="product")
*/
class Product
{
/**
* @ES\Property(type="text", name="title_in_es")
*/
private $title;
/**
* Sets title
*
* @param string $title
*/
public function setTitle($title)
{
$this->title = $title;
}
/**
* Returns title
*
* @return string
*/
public function getTitle()
{
return $this->title;
}
}
It is not mandatory to have private properties, and public will work as well. However, we firmly recommend using private according to OOP best practices.
@ES\Document(type="product")
Annotation defines that this class will represent elasticsearch type with namecontent
.- You can append any valid elasticsearch type options to the
options
variable. E.g. if you want to addenable:false
it will look like this:@ES\Document(type="product", options={"enable":"false"})
type
parameter is for type name. This parameter is optional, if there will be no parameter set, ElasticsearchBundle will create a type with lower cased class name.
For defining type properties, there is a @ES\Property
annotation. The only required
attribute is type
- Elasticsearch field type to specify what kind of information
will be indexed. By default, the field name is generated from property name by converting
it to "snake case" string. You can specify a custom name by setting the name
attribute.
Read more about elasticsearch supported types in the official documentation.
To add a custom setting for the property like analyzer include it in the options
variable.
Analyzers names must be defined in config.yml
under the analysis
node (read more in the topic above).
Here's an example how to add it:
// src/App/Document/Product.php
namespace App\Document;
use ONGR\ElasticsearchBundle\Annotation as ES;
/**
* @ES\Document()
*/
class Product
{
// ...
/**
* @ES\Property(
type="text",
options={"analyzer":"incrementalAnalyzer"}
)
*/
private $title;
//....
options
container accepts any parameters in annotation array format. We leave mapping validation to elasticsearch and elasticsearch-php client. If there will be invalid format annotations reader will throw exception, otherwise elasticsearch-php or elasticsearch database will throw an exception if something is wrong.
To define a nested or object type you have to use @ES\Embedded
annotation and create a separate
class for this annotation. Here's an example, lets assume we have a Product
type with Variant
object field.
// src/App/Document/Product.php
namespace App\Document;
use ONGR\ElasticsearchBundle\Annotation as ES;
/**
* @ES\Document()
*/
class Product
{
/**
* @ES\Property(type="string")
*/
private $title;
/**
* @var ContentMetaObject
*
* @ES\Embedded(class="App\Document\CategoryObject")
*/
private $category;
//...
}
And the Category
object will look like:
// src/App/Document/CategoryObject.php
namespace App\Document;
use ONGR\ElasticsearchBundle\Annotation as ES;
/**
* @ES\ObjectType
*/
class CategoryObject
{
/**
* @ES\Property(type="string")
*/
private $title;
//...
}
Class name can be anything, we called it
CategoryObject
to make it more readable. Notice that it is an object, not a document.
For this particular example the mapping in elasticsearch will look like this:
{
"product": {
"properties": {
"title": {
"type": "text"
},
"category": {
"type": "object",
"properties": {
"title": {
"type": "string"
}
}
}
}
}
}
To insert a document with mapping from example above you have to create 2 objects:
$category = new CategoryObject();
$category->setTitle('Jeans');
$product = new Product();
$product->setTitle('Orange Jeans');
$product->setCategoryObject($category);
//manager to work with elasticsearch index
$manager->persist($product);
$manager->commit();
As shown in the example above, by ElasticsearchBundle default, only a single object will be saved in the document.
Meanwhile, Elasticsearch database doesn't care if in an object is stored as a single value or as an array.
If it is necessary to store multiple objects (array), you have to add multiple=true
to the annotation. While
initiating a document with multiple items you need to initialize property with the new instance of ArrayCollection()
.
Here's an example:
// src/App/Document/Product.php
namespace App\Document;
use Doctrine\Common\Collections\ArrayCollection;
use ONGR\ElasticsearchBundle\Annotation as ES;
/**
* @ES\Document()
*/
class Product
{
/**
* @ES\Property(type="string")
*/
private $title;
/**
* @var ContentMetaObject
*
* @ES\Embedded(class="App\Document\VariantObject", multiple=true)
*/
private $variants;
public function __construct()
{
$this->variants = new ArrayCollection();
}
/**
* Adds variant to the collection.
*
* @param VariantObject $variant
* @return $this
*/
public function addVariant(VariantObject $variant)
{
$this->variants[] = $variant;
return $this;
}
//...
}
And the object:
// src/App/Document/VariantObject.php
namespace App\Document;
use ONGR\ElasticsearchBundle\Annotation as ES;
/**
* @ES\ObjectType
*/
class VariantObject
{
/**
* @ES\Property(type="string")
*/
private $color;
//...
}
Insert action will look like this:
<?php
$product = new Product();
$product->setTitle('Orange Jeans');
$variant = new VariantObject();
$variant->setColor('orange');
$product->addVariant($variant);
$variant = new VariantObject();
$variant->setColor('red');
$product->addVariant($variant);
$manager->persist($product);
$manager->commit();
There is no bounds to define other objects within objects.
Nested types can be defined the same way as objects, except
@ES\Nested
annotation must be used.
The difference between @ES\Embedded
and @ES\Nested
is in the way that the Elasticsearch indexes them.
While the values of the fields in embedded objects are extracted and put into the same array with all the other
values of other embedded objects in the same field, during the indexation process, the values of the fields of
nested objects stored separately. This introduces differences when querying and filtering the index.
Within the properties annotation, you can specify the field
attribute. It enables you to map several core
types of the same value. This can come very handy, e.g. when you want to map a text type with analyzed and
not analyzed values.
Lets take a look at example below:
/**
* @var string
* @ES\Property(
* type="text",
* name="title",
* options={
* "analyzer"="keywordAnalyzer",
* "fields"={
* "raw"={"type"="keyword"},
* "standard"={"type"="text", "analyzer"="standard"}
* }
* }
* )
*/
public $title;
The mapping in elasticsearch would look like this:
{
"product": {
"properties": {
"title": {
"type": "text",
"analyzer": "keywordAnalyzer",
"fields": {
"raw": {
"type": "keyword"
},
"standard": {
"type": "text",
"analyzer": "standard"
}
}
}
}
}
}
You will notice that now title value is mapped both with and without the analyzer. Querying these fields will look like this:
$query = new TermQuery('title', 'Bar');
$search->addQuery($query);
$result1 = $repo->execute($search);
$query = new MatchQuery('title.raw', 'Bar');
$search->addQuery($query);
$result2 = $repo->execute($search);
$query = new MatchQuery('title.standard', 'Bar');
$search->addQuery($query);
$result3 = $repo->execute($search);
There are specialized meta fields that introduce different behaviours of elasticsearch. Read the dedicated page about meta-field annotations here.
More information about mapping can be found in the Elasticsearch mapping documentation.