-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtime_series.py
332 lines (278 loc) · 14 KB
/
time_series.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
from sklearn.metrics import classification_report
import os
import csv
import pandas as pd
from sklearn.utils import shuffle
import torch
from torch.utils.data import DataLoader, Dataset
from sklearn.model_selection import train_test_split
from collections import Counter
import torch.nn as nn
import torch.nn.functional as F
class PositionalEncode(nn.Module):
def __init__(self, d_model, max_seq_len=512) -> None:
super().__init__()
self.pos_encode = self._get_pos_encode(max_seq_len, d_model)
def forward(self, x):
# - x: (batch_size, seq_len, d_model)
return x + self.pos_encode[:x.size(1), :].unsqueeze(0).to(x.device)
def _get_pos_encode(self, max_seq_len, d_model):
pos_encode = torch.tensor([[pos / 10000 ** (2 * (i//2) / d_model) for i in range(d_model)]
for pos in range(max_seq_len)], requires_grad=False)
pos_encode[:, 0::2] = torch.sin(pos_encode[:, 0::2])
pos_encode[:, 1::2] = torch.cos(pos_encode[:, 1::2])
# - pos_encode: (seq_len, d_model)
return pos_encode
class EncoderLayer(nn.Module):
def __init__(self, d_model, n_head, p_drop) -> None:
super().__init__()
self.dropout = nn.Dropout(p=p_drop)
self.sublayer1_prenorm = nn.LayerNorm(d_model)
self.self_attn = MultiHeadAttention(d_model, n_head)
self.sublayer2_prenorm = nn.LayerNorm(d_model)
self.pos_wise_ffn = FeedForwardNetwork(d_model)
def forward(self, x, src_mask):
res, x_ln = x, self.sublayer1_prenorm(x)
x = res + self.dropout(self.self_attn(
q=x_ln, k=x_ln, v=x_ln,
mask=src_mask.unsqueeze(1).unsqueeze(1)))
res, x_ln = x, self.sublayer2_prenorm(x)
x = res + self.dropout(self.pos_wise_ffn(x_ln))
return x
class MultiHeadAttention(nn.Module):
# - src_embed_dim = d_model
def __init__(self, d_model, n_head) -> None:
super().__init__()
self.n_head, self.one_head_dim = n_head, d_model // n_head
self.w_q = nn.Linear(d_model, self.one_head_dim * self.n_head, bias=True)
self.w_k = nn.Linear(d_model, self.one_head_dim * self.n_head, bias=True)
self.w_v = nn.Linear(d_model, self.one_head_dim * self.n_head, bias=True)
self.w_out = nn.Linear(self.one_head_dim * self.n_head, d_model, bias=True)
def forward(self, q, k, v, mask=None):
# - x: (batch_size, seq_len, d_model)
batch_size, q_len, kv_len = q.size(0), q.size(1), k.size(1)
Q = self.w_q(q).view(batch_size, q_len, self.n_head,
self.one_head_dim).transpose(1, 2)
K = self.w_k(k).view(batch_size, kv_len, self.n_head,
self.one_head_dim).transpose(1, 2)
V = self.w_v(v).view(batch_size, kv_len, self.n_head,
self.one_head_dim).transpose(1, 2)
# - Q, K, V: (batch_size, n_head, seq_len, one_head_dim)
Q_KT = torch.matmul(Q, torch.transpose(K, 2, 3))
if mask != None:
Q_KT.masked_fill_(mask, -1e9)
attn = F.softmax(Q_KT / self.one_head_dim ** 0.5, dim=-1)
O = self.w_out(torch.matmul(attn, V).transpose(1, 2).reshape(
batch_size, q_len, self.one_head_dim * self.n_head))
# - O: (batch_size, seq_len, d_model)
return O
class FeedForwardNetwork(nn.Module):
def __init__(self, d_model) -> None:
super().__init__()
self.linear1 = nn.Linear(d_model, 4 * d_model, bias=True)
self.linear2 = nn.Linear(4 * d_model, d_model, bias=True)
def forward(self, x):
return self.linear2(F.relu(self.linear1(x)))
class TransformerEncoder(nn.Module):
def __init__(self, n_labels, padding_idx, n_head, d_model,
n_layers, p_drop, max_seq_len=10) -> None:
super().__init__()
self.padding_idx = padding_idx
self.d_model = d_model
self.dropout = nn.Dropout(p=p_drop)
self.input_embedding = nn.Embedding(
num_embeddings=n_labels + 1, embedding_dim=d_model, padding_idx=padding_idx)
self.positional_encode = PositionalEncode(d_model, max_seq_len)
self.layers = nn.ModuleList(
[EncoderLayer(d_model, n_head, p_drop) for _ in range(n_layers)])
self.layer_norm = nn.LayerNorm(d_model) # for memory
self.out_layer = nn.Linear(d_model, n_labels, bias=True)
def forward(self, src_tokens, **kwargs):
src_mask = src_tokens.eq(self.padding_idx)
src_lens = src_tokens.ne(self.padding_idx).long().sum(dim=-1)
# - src_embed: (batch_size, src_len, d_model)
src_embed = self.input_embedding(src_tokens) * (self.d_model ** 0.5)
x = self.dropout(self.positional_encode(src_embed))
for layer in self.layers:
x = layer(x, src_mask)
encoder_out = self.layer_norm(x)
final_out = torch.zeros((encoder_out.shape[0], 1, encoder_out.shape[2]), device=encoder_out.device)
for b in range(len(encoder_out)):
final_out[b, 0, :] = encoder_out[b, src_lens[b]-1, :]
final_out = self.out_layer(final_out)
return final_out.squeeze()
str2rnn = {'lstm': nn.LSTM, 'gru': nn.GRU, 'rnn': nn.RNN}
class LanguageModel(nn.Module):
def __init__(self, n_labels, n_layers, d_model, p_drop, padding_idx, rnn_type):
super().__init__()
self.padding_idx = padding_idx
self.embed = nn.Embedding(n_labels + 1, d_model, padding_idx=padding_idx)
self.rnn = str2rnn[rnn_type](input_size=d_model, hidden_size=d_model, num_layers=n_layers, dropout=p_drop, batch_first=True)
self.out_layer = nn.Linear(d_model, n_labels, bias=True)
self.dropout = nn.Dropout(p=p_drop)
def forward(self, x):
src_lens = x.ne(self.padding_idx).long().sum(dim=-1)
src_embed = self.dropout(self.embed(x))
packed_src_embed = nn.utils.rnn.pack_padded_sequence(src_embed, src_lens.to('cpu'), batch_first=True, enforce_sorted=False)
packed_encoder_out, _ = self.rnn(packed_src_embed)
# - encoder_out: (batch_size, src_len, d_model) where 3rd is last layer [h_fwd; (h_bkwd)]
encoder_out, _ = nn.utils.rnn.pad_packed_sequence(packed_encoder_out, batch_first=True)
final_out = torch.zeros((encoder_out.shape[0], 1, encoder_out.shape[2]), device=encoder_out.device)
for b in range(len(encoder_out)):
final_out[b, 0, :] = encoder_out[b, src_lens[b]-1, :]
final_out = self.out_layer(final_out)
return final_out.squeeze()
def process_lm_data(file_path, with_label=True, shuf=True):
dataset = list()
csv_reader = csv.reader(open(file_path))
for row in csv_reader:
if len(str(row[2])) != 0:
if with_label:
x = str(row[2])[:-1]
y = str(row[2])[-1]
else:
x = str(row[2])
if with_label:
dataset.append([x, y])
else:
dataset.append([x])
if with_label:
data = pd.DataFrame(dataset, columns = ['x', 'y'])[1:]
else:
data = pd.DataFrame(dataset, columns = ['x'])[1:]
if shuf:
data = shuffle(data)
return data
class LanguageModelDataset(Dataset):
def __init__(self, x, y, padding_idx=-1):
self.x = x
if y is not None:
self.y = y
else:
self.y = None
self.padding_idx = padding_idx
self.max_len = max(list(len(x) for x in self.x))
def __getitem__(self, index):
item = dict()
x = [int(s) -1 for s in self.x[index]]
if len(x) < self.max_len:
x.extend([self.padding_idx] * (self.max_len - len(x)))
item['x'] = torch.tensor(x)
if self.y is not None:
item['y'] = torch.tensor(int(self.y[index]) - 1)
return item
def __len__(self):
return len(self.x)
def cal_performance(preds, labels):
report = classification_report(labels, preds, zero_division=0, output_dict=True)
acc = report['accuracy']
f_score = report['macro avg']['f1-score']
return acc, f_score
def train_epoch(model, criterion, optim, scheduler, train_loader, val_loader, epoch, train_log_interval=10, val_internal=50, val_res=None, save_dir=None, model_name=None, device=0):
model.train()
len_iter = len(train_loader)
n_step = 0
val_acces, val_fscores, val_losses = [], [], []
for i, batch in enumerate(train_loader, start=1):
optim.zero_grad()
x, y = batch['x'].to(device), batch['y'].to(device)
pred = model(x)
loss = criterion(pred, y)
loss.backward()
optim.step()
n_step += 1
if scheduler:
scheduler.step()
if i % train_log_interval == 0:
print("epoch: %d [%d/%d], loss: %.6f, lr: %.8f, steps: %d" %
(epoch, i, len_iter, loss.item(), optim.param_groups[0]["lr"], n_step + len_iter * (epoch-1)))
if i % val_internal == 0:
acc, f_score, loss = val_epoch(model, criterion, val_loader, save_dir, model_name, val_res, device)
val_acces.append(acc)
val_fscores.append(f_score)
val_losses.append(loss)
return val_acces, val_fscores, val_losses
def val_epoch(model, criterion, val_loader, save_dir, model_name, val_res, device):
model.eval()
total_eval_loss = 0
preds, Labels = [], []
with torch.no_grad():
for batch in val_loader:
x, y = batch['x'].to(device), batch['y'].to(device)
pred = model(x)
loss = criterion(pred, y)
total_eval_loss += loss.item()
batch_preds = torch.argmax(pred, dim=-1).detach().cpu().tolist()
label_ids = y.to('cpu').numpy().tolist()
preds.extend(batch_preds)
Labels.extend(label_ids)
avg_val_loss =total_eval_loss / len(val_loader)
acc, f_score = cal_performance(preds, Labels)
if save_dir:
if f_score > max(val_res):
save_model(model, save_dir, model_name)
val_res.append(f_score)
print("Valid | acc: %.4f, f_score: %.4f, global optim: %.4f, loss: %.4f" % (acc, f_score, max(val_res), avg_val_loss))
return acc, f_score, avg_val_loss
def save_model(model, save_dir, model_name):
output_model_file = os.path.join(save_dir, model_name)
torch.save(model.state_dict(), output_model_file)
print('Model has save to %s' % output_model_file)
def train(model, criterion, optim, scheduler, train_loader, val_loader, n_epoch, save_dir, model_name, device):
val_res = [0]
for i in range(1, n_epoch + 1):
train_epoch(model, criterion, optim, scheduler, train_loader, val_loader, save_dir=save_dir, model_name=model_name, epoch=i, train_log_interval=50, val_internal=100, val_res=val_res, device=device)
val_epoch(model, criterion, val_loader, save_dir, model_name, val_res, device)
def get_lm_preds(alpha=0.5, device='cpu'):
model_paths = ['./gru.bin', './transformer.bin']#, './lstm.bin']
gru = LanguageModel(6, n_layers=1, d_model=8, p_drop=0.05, padding_idx=6, rnn_type='gru')
gru.load_state_dict(torch.load(model_paths[0], map_location=device))
if len(model_paths) > 1:
transformer_enc = TransformerEncoder(n_labels=6, padding_idx=6, n_head=4, d_model=16, n_layers=2, p_drop=0.2, max_seq_len=10)
transformer_enc.load_state_dict(torch.load(model_paths[1], map_location=device))
if len(model_paths) > 2:
lstm = LanguageModel(6, n_layers=1, d_model=16, p_drop=0, padding_idx=6, rnn_type='lstm')
lstm.load_state_dict(torch.load(model_paths[2], map_location=device))
batch_size = 32
data = process_lm_data('./test_data_new.csv', with_label=False, shuf=False)
test_dataset = LanguageModelDataset(data['x'].tolist(), None, padding_idx=6)
def test_epoch(model, test_loader, device):
model.to(device)
model.eval()
preds = []
with torch.no_grad():
for i, batch in enumerate(test_loader, start=1):
x = batch['x'].to(device)
logits = model(x)
batch_preds = F.softmax(logits, dim=-1) * alpha
preds.append(batch_preds)
return torch.cat(preds)
models_preds = []
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
models_preds.append(test_epoch(gru, test_loader, device))
if len(model_paths) > 1:
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
models_preds.append(test_epoch(transformer_enc, test_loader, device))
if len(model_paths) > 2:
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
models_preds.append(test_epoch(lstm, test_loader, device))
avg_preds = sum(models_preds) / len(model_paths)
return avg_preds
if __name__ == '__main__':
data = process_lm_data('./train_data.csv', with_label=True, shuf=True)
X_train, X_val, y_train, y_val = train_test_split(data['x'].tolist(), data['y'].tolist(), test_size=0.05, random_state=1)
batch_size = 32
train_dataset = LanguageModelDataset(X_train, y_train, padding_idx=6)
val_dataset = LanguageModelDataset(X_val, y_val, padding_idx=6)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True)
device = torch.device('cpu')
#device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
criterion = nn.CrossEntropyLoss()
#model = LanguageModel(6, n_layers=1, d_model=8, p_drop=0.05, padding_idx=6, rnn_type='gru')
#model = TransformerEncoder(n_labels=6, padding_idx=6, n_head=4, d_model=16, n_layers=2, p_drop=0.2, max_seq_len=10)
model = LanguageModel(6, n_layers=1, d_model=16, p_drop=0, padding_idx=6, rnn_type='lstm')
#optim = torch.optim.SGD(model.parameters(), lr=1e-2) # SGD: 2e-3, 5e-3
optim = torch.optim.AdamW(model.parameters(), lr=2e-3)
model_name = 'lstm.bin'
train(model, criterion, optim, None, train_loader, val_loader, n_epoch=200, save_dir='.', model_name=model_name, device=device)