-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnullSimScript.R
82 lines (55 loc) · 2.28 KB
/
nullSimScript.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# to run: R CMD BATCH nullSimScript.R &
date()
library(foreach)
library(doParallel)
#library(mvnfast)
#setwd("C:/Users/Jo Hardin/Desktop/rsmcca")
source("Final_funcs/build_B.R")
source("Final_funcs/sim_setup.R")
source("Final_funcs/sample_sigma12_function.R")
source("Final_funcs/scca_function.R")
source("Final_funcs/scca_CVperm.R")
source("Final_funcs/Cov_suped.R")
start <- date()
start <- strptime(start, "%a %b %d %H:%M:%S %Y")
## We first set the parameters for running in parallel as well as the
## population parameter set-up
num.cluster1 = 25
num.runs1 = 4*num.cluster1
k = 0 # not:, set k=0 to create no relationship between X and Y
p = 500
q = 1000
Btype = 2
num.obs = 50
n.pair = 2 # should be at least 10
nperm=100
# cutoff.perc tells where to cutoff for permutation values
cutoff.perc = 0.9
cor.suped = .5 # the cor of internal X and internal Y
noise = "clean"
# options are clean, t, sym, and asym (with t, sym, and asym you need noise.level)
# t uses df=2
B <- build.B(k,p,q,Btype)
run1 <- list()
length(run1)<- num.runs1 #need this value
c1 <- makeCluster(num.cluster1)
registerDoParallel(c1)
## This loop runs the entire simulation in parallel for each dataset.
results.sim <- foreach(i=1:num.runs1, .combine='rbind') %dopar%{
library(mvnfast)
#set.seed(47)
simdata = sim.setup(n.obs = num.obs, B, var.cor=cor.suped, noisetype = noise, Btype=Btype)
sim.output = scca.CVperm(simdata, n.pair, nperm)
# using the permuted correlations to create a curve to determine significance cutoffs
perm.cor.s = sim.output$perm.cor.s
perm.s.curve = apply(perm.cor.s, 2, quantile, probs=cutoff.perc)
perm.cor.p = sim.output$perm.cor.p
perm.p.curve = apply(perm.cor.p, 2, quantile, probs=cutoff.perc)
c(perm.s.curve, sim.output$cor.test.s, perm.p.curve, sim.output$cor.test.p)
}
fname = paste("nullB",Btype,".n",num.obs,".p",p,".q",q,".",noise,".txt",sep="")
write.table(results.sim, file=fname, row.names=F, quote=F, col.names=F, sep="\t")
end1 <- date()
end1 <- strptime(end1, "%a %b %d %H:%M:%S %Y")
dif1 <- as.numeric(difftime(end1,start,units="mins")) # how long the first loop takes, in minutes
write.table(cbind(dif1, dif1, fname), file="times.txt", row.names=F, col.names=F, quote=F, sep="\t", append=T)