forked from zhangxiaoyu11/OmiEmbed
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest.py
72 lines (66 loc) · 3.41 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
Separated testing for OmiEmbed
"""
import time
from util import util
from params.test_params import TestParams
from datasets import create_single_dataloader
from models import create_model
from util.visualizer import Visualizer
if __name__ == '__main__':
# Get testing parameter
param = TestParams().parse()
if param.deterministic:
util.setup_seed(param.seed)
# Dataset related
dataloader, sample_list = create_single_dataloader(param, shuffle=False) # No shuffle for testing
print('The size of testing set is {}'.format(len(dataloader)))
# Get sample list for the dataset
param.sample_list = dataloader.get_sample_list()
# Get the dimension of input omics data
param.omics_dims = dataloader.get_omics_dims()
if param.downstream_task == 'classification' or param.downstream_task == 'multitask':
# Get the number of classes for the classification task
if param.class_num == 0:
param.class_num = dataloader.get_class_num()
print('The number of classes: {}'.format(param.class_num))
if param.downstream_task == 'regression' or param.downstream_task == 'multitask':
# Get the range of the target values
values_min = dataloader.get_values_min()
values_max = dataloader.get_values_max()
if param.regression_scale == 1:
param.regression_scale = values_max
print('The range of the target values is [{}, {}]'.format(values_min, values_max))
if param.downstream_task == 'survival' or param.downstream_task == 'multitask':
# Get the range of T
survival_T_min = dataloader.get_survival_T_min()
survival_T_max = dataloader.get_survival_T_max()
if param.survival_T_max == -1:
param.survival_T_max = survival_T_max
print('The range of survival T is [{}, {}]'.format(survival_T_min, survival_T_max))
# Model related
model = create_model(param) # Create a model given param.model and other parameters
model.setup(param) # Regular setup for the model: load and print networks, create schedulers
visualizer = Visualizer(param) # Create a visualizer to print results
# TESTING
model.set_eval()
test_start_time = time.time() # Start time of testing
output_dict, losses_dict, metrics_dict = model.init_log_dict() # Initialize the log dictionaries
if param.save_latent_space:
latent_dict = model.init_latent_dict()
# Start testing loop
for i, data in enumerate(dataloader):
dataset_size = len(dataloader)
actual_batch_size = len(data['index'])
model.set_input(data) # Unpack input data from the output dictionary of the dataloader
model.test() # Run forward to get the output tensors
model.update_log_dict(output_dict, losses_dict, metrics_dict, actual_batch_size) # Update the log dictionaries
if param.save_latent_space:
latent_dict = model.update_latent_dict(latent_dict) # Update the latent space array
if i % param.print_freq == 0: # Print testing log
visualizer.print_test_log(param.epoch_to_load, i, losses_dict, metrics_dict, param.batch_size, dataset_size)
test_time = time.time() - test_start_time
visualizer.print_test_summary(param.epoch_to_load, losses_dict, output_dict, test_time)
visualizer.save_output_dict(output_dict)
if param.save_latent_space:
visualizer.save_latent_space(latent_dict, sample_list)