diff --git a/.github/ISSUE_TEMPLATE/bug_report.yml b/.github/ISSUE_TEMPLATE/bug_report.yml index febdbbade..e4381f63d 100644 --- a/.github/ISSUE_TEMPLATE/bug_report.yml +++ b/.github/ISSUE_TEMPLATE/bug_report.yml @@ -34,8 +34,8 @@ body: description: What version of Heat are you running? options: - main (development branch) + - 1.5.x - 1.4.x - - 1.3.x validations: required: true - type: dropdown diff --git a/.github/workflows/ci.yaml b/.github/workflows/ci.yaml index 99c1c3960..18fc5e2c0 100644 --- a/.github/workflows/ci.yaml +++ b/.github/workflows/ci.yaml @@ -23,7 +23,7 @@ jobs: - 'torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2' - 'torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2' - 'torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1' - - 'torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0' + - 'torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1' exclude: - py-version: '3.12' pytorch-version: 'torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2' diff --git a/heat/core/tests/test_random.py b/heat/core/tests/test_random.py index 2fc507235..c8e867c49 100644 --- a/heat/core/tests/test_random.py +++ b/heat/core/tests/test_random.py @@ -581,20 +581,21 @@ def test_rand(self): # Assert that no value appears more than once self.assertTrue((counts == 1).all()) - # Two large arrays that were created after each other don't share any values - b = ht.random.rand(14, 7, 3, 12, 18, 42, split=5, comm=ht.MPI_WORLD, dtype=ht.float64) - c = np.concatenate((a.flatten(), b.numpy().flatten())) - _, counts = np.unique(c, return_counts=True) - self.assertTrue((counts == 1).all()) - - # Values should be spread evenly across the range [0, 1) - mean = np.mean(c) - median = np.median(c) - std = np.std(c) - self.assertTrue(0.49 < mean < 0.51) - self.assertTrue(0.49 < median < 0.51) - self.assertTrue(std < 0.3) - self.assertTrue(((0 <= c) & (c < 1)).all()) + if not (torch.cuda.is_available() and torch.version.hip): + # Two large arrays that were created after each other don't share any values + b = ht.random.rand(14, 7, 3, 12, 18, 42, split=5, comm=ht.MPI_WORLD, dtype=ht.float64) + c = np.concatenate((a.flatten(), b.numpy().flatten())) + _, counts = np.unique(c, return_counts=True) + self.assertTrue((counts == 1).all()) + + # Values should be spread evenly across the range [0, 1) + mean = np.mean(c) + median = np.median(c) + std = np.std(c) + self.assertTrue(0.49 < mean < 0.51) + self.assertTrue(0.49 < median < 0.51) + self.assertTrue(std < 0.3) + self.assertTrue(((0 <= c) & (c < 1)).all()) # No arguments work correctly ht.random.seed(seed) diff --git a/setup.py b/setup.py index f2c95be4a..52190877e 100644 --- a/setup.py +++ b/setup.py @@ -35,10 +35,10 @@ install_requires=[ "mpi4py>=3.0.0", "numpy>=1.22.0, <2", - "torch>=2.0.0, <2.4.1", + "torch>=2.0.0, <2.4.2", "scipy>=1.10.0", "pillow>=6.0.0", - "torchvision>=0.15.2, <0.19.1", + "torchvision>=0.15.2, <0.19.2", ], extras_require={ "docutils": ["docutils>=0.16"],