-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathevaluate_flan.py
190 lines (159 loc) · 5.85 KB
/
evaluate_flan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import argparse
import os
import torch
import numpy as np
import pandas as pd
from categories import subcategories, categories
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import time
choices = ["A", "B", "C", "D"]
def format_subject(subject):
l = subject.split("_")
s = ""
for entry in l:
s += " " + entry
return s
def format_example(df, idx, include_answer=True):
prompt = df.iloc[idx, 0]
k = df.shape[1] - 2
for j in range(k):
prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j + 1])
prompt += "\nAnswer:"
if include_answer:
prompt += " {}\n\n".format(df.iloc[idx, k + 1])
return prompt
def gen_prompt(train_df, subject, k=-1):
prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format(
format_subject(subject)
)
if k == -1:
k = train_df.shape[0]
for i in range(k):
prompt += format_example(train_df, i)
return prompt
@torch.no_grad()
def eval(args, subject, model, tokenizer, dev_df, test_df):
cors = []
all_probs = []
answers = choices[: test_df.shape[1] - 2]
for i in range(test_df.shape[0]):
# get prompt and make sure it fits
k = args.ntrain
prompt_end = format_example(test_df, i, include_answer=False)
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
while input_ids.shape[-1] > 2048:
k -= 1
train_prompt = gen_prompt(dev_df, subject, k)
prompt = train_prompt + prompt_end
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
label = test_df.iloc[i, test_df.shape[1] - 1]
decoder_input_ids = tokenizer("", return_tensors="pt").input_ids.cuda()
decoder_input_ids = model._shift_right(decoder_input_ids)
logits = model(
input_ids=input_ids, decoder_input_ids=decoder_input_ids
).logits.flatten()
probs = (
torch.nn.functional.softmax(
torch.tensor(
[
logits[tokenizer("A").input_ids[0]],
logits[tokenizer("B").input_ids[0]],
logits[tokenizer("C").input_ids[0]],
logits[tokenizer("D").input_ids[0]],
]
),
dim=0,
)
.detach()
.cpu()
.numpy()
)
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)]
cor = pred == label
cors.append(cor)
all_probs.append(probs)
acc = np.mean(cors)
cors = np.array(cors)
all_probs = np.array(all_probs)
print("Average accuracy {:.3f} - {}".format(acc, subject))
return cors, acc, all_probs
def main(args):
model = AutoModelForSeq2SeqLM.from_pretrained(args.model)
tokenizer = AutoTokenizer.from_pretrained(args.model)
heads_per_gpu = len(model.encoder.block) // args.ngpu
device_map = {
gpu: list(
range(
0 + (gpu * heads_per_gpu),
(0 + (gpu * heads_per_gpu)) + heads_per_gpu,
)
)
for gpu in range(args.ngpu)
}
model.parallelize(device_map)
model.eval()
subjects = sorted(
[
f.split("_test.csv")[0]
for f in os.listdir(os.path.join(args.data_dir, "test"))
if "_test.csv" in f
]
)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
if not os.path.exists(os.path.join(args.save_dir, "results_{}".format(args.model))):
os.makedirs(os.path.join(args.save_dir, "results_{}".format(args.model)))
all_cors = []
subcat_cors = {
subcat: [] for subcat_lists in subcategories.values() for subcat in subcat_lists
}
cat_cors = {cat: [] for cat in categories}
for subject in subjects:
dev_df = pd.read_csv(
os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None
)[: args.ntrain]
test_df = pd.read_csv(
os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None
)
cors, acc, probs = eval(args, subject, model, tokenizer, dev_df, test_df)
subcats = subcategories[subject]
for subcat in subcats:
subcat_cors[subcat].append(cors)
for key in categories.keys():
if subcat in categories[key]:
cat_cors[key].append(cors)
all_cors.append(cors)
test_df["{}_correct".format(args.model)] = cors
for j in range(probs.shape[1]):
choice = choices[j]
test_df["{}_choice{}_probs".format(args.model, choice)] = probs[:, j]
test_df.to_csv(
os.path.join(
args.save_dir, "results_{}".format(args.model), "{}.csv".format(subject)
),
index=None,
)
for subcat in subcat_cors:
subcat_acc = np.mean(np.concatenate(subcat_cors[subcat]))
print("Average accuracy {:.3f} - {}".format(subcat_acc, subcat))
for cat in cat_cors:
cat_acc = np.mean(np.concatenate(cat_cors[cat]))
print("Average accuracy {:.3f} - {}".format(cat_acc, cat))
weighted_acc = np.mean(np.concatenate(all_cors))
print("Average accuracy: {:.3f}".format(weighted_acc))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ntrain", "-k", type=int, default=5)
parser.add_argument("--ngpu", "-g", type=int, default=2)
parser.add_argument("--data_dir", "-d", type=str, default="data")
parser.add_argument("--save_dir", "-s", type=str, default="results")
parser.add_argument(
"--model",
"-m",
type=str,
default="google/flan-t5-small",
)
args = parser.parse_args()
main(args)