diff --git a/README.md b/README.md index 3d579d7..28c4e09 100644 --- a/README.md +++ b/README.md @@ -93,7 +93,8 @@ class SNC( dist_strategy="snn", dist_paramter={}, dist_function=None, - cluster_strategy="dbscan" + cluster_strategy="dbscan", + snn_knn_matrix=None ) ``` @@ -122,6 +123,7 @@ class SNC( > - `"snn"` : utilizes Shared Nearest Neighbor based on dissimilarity > - `"euclidean"` > - `"predefined"` : allows user-defined distance function +> - `"inject_snn"` : inject knn and snn info > - We highly recommend to use default distance strategy "snn". > - If you set `dist_strategy` as "predefined", you should also explicitly pass the way to compute distance as `dist_function` parameter. THe distance for cluster automatically computed as average linkage. > @@ -153,7 +155,14 @@ class SNC( > - `"x-means"` : based on X-Means clustering algorithm > - `"'K'-means"` : based on K-Means clustering algorithm, where users can freely change `'K'` value by substituting it with integer number. > - e.g., `15-means`, `20-means`, etc. - +> ***`snn_knn_matrix`*** : *`dict, (optional, default: None)`* +> - If you want to inject precomputed snn and knn, use this parameter +> - To inject the parameter, you should set `dist_strategy` as `"inject_snn"` +> - The dictionary should hold: +> - `"raw_snn"` : *`Array, shape=(n_samples, n_samples), dtype=float`*, the snn matrix of raw data +> - `"raw_knn"` : *`Array, shape=(n_samples, n_samples), dtype=float`*, the knn matrix of raw data +> - `"emb_snn"` : *`Array, shape=(n_samples, n_samples), dtype=float`*, the snn matrix of embedded data +> - `"emb_knn"` : *`Array, shape=(n_samples, n_samples), dtype=float`*, the knn matrix of embedded data ### Methods diff --git a/setup.py b/setup.py index 293b206..ce9bd0f 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name="snc", - version="0.0.5", + version="0.0.6", author="Hyeon Jeon", author_email="hj@hcil.snu.ac.kr", description="Implementation of Steadiness & Cohesiveness",