-
Notifications
You must be signed in to change notification settings - Fork 196
/
Copy pathtrain.py
250 lines (206 loc) · 9.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import datetime
from os import path
import math
import git
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, ConcatDataset
import torch.distributed as distributed
from model.trainer import XMemTrainer
from dataset.static_dataset import StaticTransformDataset
from dataset.vos_dataset import VOSDataset
from util.logger import TensorboardLogger
from util.configuration import Configuration
from util.load_subset import load_sub_davis, load_sub_yv
"""
Initial setup
"""
# Init distributed environment
distributed.init_process_group(backend="nccl")
print(f'CUDA Device count: {torch.cuda.device_count()}')
# Parse command line arguments
raw_config = Configuration()
raw_config.parse()
if raw_config['benchmark']:
torch.backends.cudnn.benchmark = True
# Get current git info
repo = git.Repo(".")
git_info = str(repo.active_branch)+' '+str(repo.head.commit.hexsha)
local_rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
torch.cuda.set_device(local_rank)
print(f'I am rank {local_rank} in this world of size {world_size}!')
network_in_memory = None
stages = raw_config['stages']
stages_to_perform = list(stages)
for si, stage in enumerate(stages_to_perform):
# Set seed to ensure the same initialization
torch.manual_seed(14159265)
np.random.seed(14159265)
random.seed(14159265)
# Pick stage specific hyperparameters out
stage_config = raw_config.get_stage_parameters(stage)
config = dict(**raw_config.args, **stage_config)
if config['exp_id'] != 'NULL':
config['exp_id'] = config['exp_id']+'_s%s'%stages[:si+1]
config['single_object'] = (stage == '0')
config['num_gpus'] = world_size
if config['batch_size']//config['num_gpus']*config['num_gpus'] != config['batch_size']:
raise ValueError('Batch size must be divisible by the number of GPUs.')
config['batch_size'] //= config['num_gpus']
config['num_workers'] //= config['num_gpus']
print(f'We are assuming {config["num_gpus"]} GPUs.')
print(f'We are now starting stage {stage}')
"""
Model related
"""
if local_rank == 0:
# Logging
if config['exp_id'].lower() != 'null':
print('I will take the role of logging!')
long_id = '%s_%s' % (datetime.datetime.now().strftime('%b%d_%H.%M.%S'), config['exp_id'])
else:
long_id = None
logger = TensorboardLogger(config['exp_id'], long_id, git_info)
logger.log_string('hyperpara', str(config))
# Construct the rank 0 model
model = XMemTrainer(config, logger=logger,
save_path=path.join('saves', long_id, long_id) if long_id is not None else None,
local_rank=local_rank, world_size=world_size).train()
else:
# Construct model for other ranks
model = XMemTrainer(config, local_rank=local_rank, world_size=world_size).train()
# Load pertrained model if needed
if raw_config['load_checkpoint'] is not None:
total_iter = model.load_checkpoint(raw_config['load_checkpoint'])
raw_config['load_checkpoint'] = None
print('Previously trained model loaded!')
else:
total_iter = 0
if network_in_memory is not None:
print('I am loading network from the previous stage')
model.load_network_in_memory(network_in_memory)
network_in_memory = None
elif raw_config['load_network'] is not None:
print('I am loading network from a disk, as listed in configuration')
model.load_network(raw_config['load_network'])
raw_config['load_network'] = None
"""
Dataloader related
"""
# To re-seed the randomness everytime we start a worker
def worker_init_fn(worker_id):
worker_seed = torch.initial_seed()%(2**31) + worker_id + local_rank*100
np.random.seed(worker_seed)
random.seed(worker_seed)
def construct_loader(dataset):
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset, rank=local_rank, shuffle=True)
train_loader = DataLoader(dataset, config['batch_size'], sampler=train_sampler, num_workers=config['num_workers'],
worker_init_fn=worker_init_fn, drop_last=True)
return train_sampler, train_loader
def renew_vos_loader(max_skip, finetune=False):
# //5 because we only have annotation for every five frames
yv_dataset = VOSDataset(path.join(yv_root, 'JPEGImages'),
path.join(yv_root, 'Annotations'), max_skip//5, is_bl=False, subset=load_sub_yv(), num_frames=config['num_frames'], finetune=finetune)
davis_dataset = VOSDataset(path.join(davis_root, 'JPEGImages', '480p'),
path.join(davis_root, 'Annotations', '480p'), max_skip, is_bl=False, subset=load_sub_davis(), num_frames=config['num_frames'], finetune=finetune)
train_dataset = ConcatDataset([davis_dataset]*5 + [yv_dataset])
print(f'YouTube dataset size: {len(yv_dataset)}')
print(f'DAVIS dataset size: {len(davis_dataset)}')
print(f'Concat dataset size: {len(train_dataset)}')
print(f'Renewed with {max_skip=}')
return construct_loader(train_dataset)
def renew_bl_loader(max_skip, finetune=False):
train_dataset = VOSDataset(path.join(bl_root, 'JPEGImages'),
path.join(bl_root, 'Annotations'), max_skip, is_bl=True, num_frames=config['num_frames'], finetune=finetune)
print(f'Blender dataset size: {len(train_dataset)}')
print(f'Renewed with {max_skip=}')
return construct_loader(train_dataset)
"""
Dataset related
"""
"""
These define the training schedule of the distance between frames
We will switch to max_skip_values[i] once we pass the percentage specified by increase_skip_fraction[i]
Not effective for stage 0 training
The initial value is not listed here but in renew_vos_loader(X)
"""
max_skip_values = [10, 15, 5, 5]
if stage == '0':
static_root = path.expanduser(config['static_root'])
# format: path, method (style of storing images), mutliplier
train_dataset = StaticTransformDataset(
[
(path.join(static_root, 'fss'), 0, 1),
(path.join(static_root, 'DUTS-TR'), 1, 1),
(path.join(static_root, 'DUTS-TE'), 1, 1),
(path.join(static_root, 'ecssd'), 1, 1),
(path.join(static_root, 'BIG_small'), 1, 5),
(path.join(static_root, 'HRSOD_small'), 1, 5),
], num_frames=config['num_frames'])
train_sampler, train_loader = construct_loader(train_dataset)
print(f'Static dataset size: {len(train_dataset)}')
elif stage == '1':
increase_skip_fraction = [0.1, 0.3, 0.8, 100]
bl_root = path.join(path.expanduser(config['bl_root']))
train_sampler, train_loader = renew_bl_loader(5)
renew_loader = renew_bl_loader
else:
# stage 2 or 3
increase_skip_fraction = [0.1, 0.3, 0.9, 100]
# VOS dataset, 480p is used for both datasets
yv_root = path.join(path.expanduser(config['yv_root']), 'train_480p')
davis_root = path.join(path.expanduser(config['davis_root']), '2017', 'trainval')
train_sampler, train_loader = renew_vos_loader(5)
renew_loader = renew_vos_loader
"""
Determine max epoch
"""
total_epoch = math.ceil(config['iterations']/len(train_loader))
current_epoch = total_iter // len(train_loader)
print(f'We approximately use {total_epoch} epochs.')
if stage != '0':
change_skip_iter = [round(config['iterations']*f) for f in increase_skip_fraction]
# Skip will only change after an epoch, not in the middle
print(f'The skip value will change approximately at the following iterations: {change_skip_iter[:-1]}')
"""
Starts training
"""
finetuning = False
# Need this to select random bases in different workers
np.random.seed(np.random.randint(2**30-1) + local_rank*100)
try:
while total_iter < config['iterations'] + config['finetune']:
# Crucial for randomness!
train_sampler.set_epoch(current_epoch)
current_epoch += 1
print(f'Current epoch: {current_epoch}')
# Train loop
model.train()
for data in train_loader:
# Update skip if needed
if stage!='0' and total_iter >= change_skip_iter[0]:
while total_iter >= change_skip_iter[0]:
cur_skip = max_skip_values[0]
max_skip_values = max_skip_values[1:]
change_skip_iter = change_skip_iter[1:]
print(f'Changing skip to {cur_skip=}')
train_sampler, train_loader = renew_loader(cur_skip)
break
# fine-tune means fewer augmentations to train the sensory memory
if config['finetune'] > 0 and not finetuning and total_iter >= config['iterations']:
train_sampler, train_loader = renew_loader(cur_skip, finetune=True)
finetuning = True
model.save_network_interval = 1000
break
model.do_pass(data, total_iter)
total_iter += 1
if total_iter >= config['iterations'] + config['finetune']:
break
finally:
if not config['debug'] and model.logger is not None and total_iter>5000:
model.save_network(total_iter)
model.save_checkpoint(total_iter)
network_in_memory = model.XMem.module.state_dict()
distributed.destroy_process_group()