-
Notifications
You must be signed in to change notification settings - Fork 429
/
Copy pathrun_sft.py
233 lines (204 loc) · 8.12 KB
/
run_sft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Supervised fine-tuning script for decoder language models.
"""
import logging
import random
import sys
import datasets
import torch
import transformers
from transformers import AutoModelForCausalLM, set_seed
from alignment import (
DataArguments,
H4ArgumentParser,
ModelArguments,
SFTConfig,
apply_chat_template,
decontaminate_humaneval,
get_checkpoint,
get_datasets,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
get_tokenizer,
)
from trl import SFTTrainer, setup_chat_format
logger = logging.getLogger(__name__)
def main():
parser = H4ArgumentParser((ModelArguments, DataArguments, SFTConfig))
model_args, data_args, training_args = parser.parse()
# Set seed for reproducibility
set_seed(training_args.seed)
###############
# Setup logging
###############
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process a small summary
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Model parameters {model_args}")
logger.info(f"Data parameters {data_args}")
logger.info(f"Training/evaluation parameters {training_args}")
# Check for last checkpoint
last_checkpoint = get_checkpoint(training_args)
if last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(f"Checkpoint detected, resuming training at {last_checkpoint=}.")
###############
# Load datasets
###############
raw_datasets = get_datasets(
data_args,
splits=data_args.dataset_splits,
configs=data_args.dataset_configs,
columns_to_keep=["messages", "chosen", "rejected", "prompt", "completion", "label"],
)
logger.info(
f"Training on the following datasets and their proportions: {[split + ' : ' + str(dset.num_rows) for split, dset in raw_datasets.items()]}"
)
column_names = list(raw_datasets["train"].features)
################
# Load tokenizer
################
tokenizer = get_tokenizer(model_args, data_args)
#######################
# Load pretrained model
#######################
logger.info("*** Load pretrained model ***")
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = model_args.model_name_or_path
# For ChatML we need to add special tokens and resize the embedding layer
if "<|im_start|>" in tokenizer.chat_template and "gemma-tokenizer-chatml" not in tokenizer.name_or_path:
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, **model_kwargs)
model, tokenizer = setup_chat_format(model, tokenizer)
model_kwargs = None
#####################
# Apply chat template
#####################
raw_datasets = raw_datasets.map(
apply_chat_template,
fn_kwargs={
"tokenizer": tokenizer,
"task": "sft",
"auto_insert_empty_system_msg": data_args.auto_insert_empty_system_msg,
},
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
desc="Applying chat template",
)
##########################
# Decontaminate benchmarks
##########################
num_raw_train_samples = len(raw_datasets["train"])
raw_datasets = raw_datasets.filter(decontaminate_humaneval, batched=True, batch_size=10_000, num_proc=1)
num_filtered_train_samples = num_raw_train_samples - len(raw_datasets["train"])
logger.info(
f"Decontaminated {num_filtered_train_samples} ({num_filtered_train_samples/num_raw_train_samples * 100:.2f}%) samples from the training set."
)
train_dataset = raw_datasets["train"]
eval_dataset = raw_datasets["test"]
with training_args.main_process_first(desc="Log a few random samples from the processed training set"):
for index in random.sample(range(len(raw_datasets["train"])), 3):
logger.info(f"Sample {index} of the processed training set:\n\n{raw_datasets['train'][index]['text']}")
########################
# Initialize the Trainer
########################
trainer = SFTTrainer(
model=model,
model_init_kwargs=model_kwargs,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
dataset_text_field="text",
max_seq_length=training_args.max_seq_length,
tokenizer=tokenizer,
packing=True,
peft_config=get_peft_config(model_args),
dataset_kwargs=training_args.dataset_kwargs,
)
###############
# Training loop
###############
logger.info("*** Train ***")
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
metrics["train_samples"] = len(train_dataset)
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
##################################
# Save model and create model card
##################################
logger.info("*** Save model ***")
trainer.save_model(training_args.output_dir)
logger.info(f"Model saved to {training_args.output_dir}")
# Save everything else on main process
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"dataset": list(data_args.dataset_mixer.keys()),
"dataset_tags": list(data_args.dataset_mixer.keys()),
"tags": ["alignment-handbook"],
}
if trainer.accelerator.is_main_process:
trainer.create_model_card(**kwargs)
# Restore k,v cache for fast inference
trainer.model.config.use_cache = True
trainer.model.config.save_pretrained(training_args.output_dir)
##########
# Evaluate
##########
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
metrics["eval_samples"] = len(eval_dataset)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.push_to_hub is True:
logger.info("Pushing to hub...")
trainer.push_to_hub(**kwargs)
logger.info("*** Training complete ***")
if __name__ == "__main__":
main()