-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathdetect.py
35 lines (28 loc) · 1.15 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import caffe
import numpy as np
import detect_tool as tool
pic_name = '/home/zxd/projects/darknet-master/data/person.jpg'
# caffe.set_device(0)
# caffe.set_mode_gpu()
caffe.set_mode_cpu()
image = caffe.io.load_image(pic_name)
transformer = caffe.io.Transformer({'data': (1, 3, 416, 416)})
transformer.set_transpose('data', (2, 0, 1)) # move image channels to outermost dimension
transformed_image = transformer.preprocess('data', image)
print transformed_image.shape
model_def = '/home/zxd/projects/test/prototxt_test/yolo.prototxt'
model_weights = '/home/zxd/projects/PycharmProjects/test_caffe/yolo.caffemodel'
net = caffe.Net(model_def, model_weights, caffe.TEST)
net.blobs['data'].reshape(1, 3, 416, 416)
net.blobs['data'].data[...] = transformed_image
output = net.forward()
feat = net.blobs['region1'].data[0]
print feat.shape
boxes_of_each_grid = 5
classes = 80
thread = 0.45
biases = np.array([0.738768, 0.874946, 2.42204, 2.65704, 4.30971, 7.04493, 10.246, 4.59428, 12.6868, 11.8741])
boxes = tool.get_region_boxes(feat, boxes_of_each_grid, classes, thread, biases)
for box in boxes:
print box
tool.draw_image(pic_name, boxes=boxes, namelist_file='coco.names')