-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathsequence.c
805 lines (730 loc) · 27 KB
/
sequence.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
/*******************************************************************************
PRODIGAL (PROkaryotic DynamIc Programming Genefinding ALgorithm)
Copyright (C) 2007-2016 University of Tennessee / UT-Battelle
Code Author: Doug Hyatt
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*******************************************************************************/
#include "sequence.h"
/*******************************************************************************
Read the sequence for training purposes. If we encounter multiple
sequences, we insert TTAATTAATTAA between each one to force stops in all
six frames. When we hit MAX_SEQ bp, we stop and return what we've got so
far for training. This routine reads in FASTA, and has a very 'loose'
Genbank and Embl parser, but, to be safe, FASTA should generally be
preferred.
*******************************************************************************/
int read_seq_training(fptr fp, unsigned char *seq, unsigned char *useq,
double *gc, int do_mask, mask *mlist, int *nm) {
char line[MAX_LINE+1];
int hdr = 0, fhdr = 0, bctr = 0, len = 0, wrn = 0;
int gc_cont = 0, mask_beg = -1;
unsigned int i, gapsize = 0;
line[MAX_LINE] = '\0';
while(INPUT_GETS(line, MAX_LINE, fp) != NULL) {
if(hdr == 0 && line[strlen(line)-1] != '\n' && wrn == 0) {
wrn = 1;
fprintf(stderr, "\n\nWarning: saw non-sequence line longer than ");
fprintf(stderr, "%d chars, sequence might not be read ", MAX_LINE);
fprintf(stderr, "correctly.\n\n");
}
if(line[0] == '>' || (line[0] == 'S' && line[1] == 'Q') ||
(strlen(line) > 6 && strncmp(line, "ORIGIN", 6) == 0)) {
hdr = 1;
if(fhdr > 0) {
for(i = 0; i < 12; i++) {
if(i%4 == 0 || i%4 == 1) { set(seq, bctr); set(seq, bctr+1); }
bctr+=2; len++;
}
}
fhdr++;
}
else if(hdr == 1 && (line[0] == '/' && line[1] == '/')) hdr = 0;
else if(hdr == 1) {
if(strstr(line, "Expand") != NULL && strstr(line, "gap") != NULL) {
sscanf(strstr(line, "gap")+4, "%u", &gapsize);
if(gapsize < 1 || gapsize > MAX_LINE) {
fprintf(stderr, "Error: gap size in gbk file can't exceed line");
fprintf(stderr, " size.\n");
exit(51);
}
for(i = 0; i < gapsize; i++) line[i] = 'n';
line[i] = '\0';
}
for(i = 0; i < strlen(line); i++) {
if(line[i] < 'A' || line[i] > 'z') continue;
if(do_mask == 1 && mask_beg != -1 && line[i] != 'N' && line[i] != 'n') {
if(len - mask_beg >= MASK_SIZE) {
if(*nm == MAX_MASKS) {
fprintf(stderr, "Error: saw too many regions of 'N''s in the ");
fprintf(stderr, "sequence.\n");
exit(52);
}
mlist[*nm].begin = mask_beg;
mlist[*nm].end = len-1;
(*nm)++;
}
mask_beg = -1;
}
if(do_mask == 1 && mask_beg == -1 && (line[i] == 'N' || line[i] == 'n'))
mask_beg = len;
if(line[i] == 'g' || line[i] == 'G') { set(seq, bctr); gc_cont++; }
else if(line[i] == 't' || line[i] == 'T') {
set(seq, bctr);
set(seq, bctr+1);
}
else if(line[i] == 'c' || line[i] == 'C') {
set(seq, bctr+1);
gc_cont++;
}
else if(line[i] != 'a' && line[i] != 'A') {
set(seq, bctr+1);
set(useq, len);
}
bctr+=2; len++;
}
}
if(len+MAX_LINE >= MAX_SEQ) {
fprintf(stderr, "\n\nWarning: Sequence is long (max %d for training).\n",
MAX_SEQ);
fprintf(stderr, "Training on the first %d bases.\n\n", MAX_SEQ);
break;
}
}
if(fhdr > 1) {
for(i = 0; i < 12; i++) {
if(i%4 == 0 || i%4 == 1) { set(seq, bctr); set(seq, bctr+1); }
bctr+=2; len++;
}
}
*gc = ((double)gc_cont / (double)len);
return len;
}
/* This routine reads in the next sequence in a FASTA/GB/EMBL file */
int next_seq_multi(fptr fp, unsigned char *seq, unsigned char *useq,
int *sctr, double *gc, int do_mask, mask *mlist, int *nm,
char *cur_hdr, char *new_hdr) {
char line[MAX_LINE+1];
int reading_seq = 0, genbank_end = 0, bctr = 0, len = 0, wrn = 0;
int gc_cont = 0, mask_beg = -1;
unsigned int i, gapsize = 0;
sprintf(new_hdr, "Prodigal_Seq_%d", *sctr+2);
if(*sctr > 0) reading_seq = 1;
line[MAX_LINE] = '\0';
while(INPUT_GETS(line, MAX_LINE, fp) != NULL) {
if(reading_seq == 0 && line[strlen(line)-1] != '\n' && wrn == 0) {
wrn = 1;
fprintf(stderr, "\n\nWarning: saw non-sequence line longer than ");
fprintf(stderr, "%d chars, sequence might not be read ", MAX_LINE);
fprintf(stderr, "correctly.\n\n");
}
if(strlen(line) > 10 && strncmp(line, "DEFINITION", 10) == 0) {
if(genbank_end == 0) {
strcpy(cur_hdr, line+12);
cur_hdr[strlen(cur_hdr)-1] = '\0';
}
else {
strcpy(new_hdr, line+12);
new_hdr[strlen(new_hdr)-1] = '\0';
}
}
if(line[0] == '>' || (line[0] == 'S' && line[1] == 'Q') ||
(strlen(line) > 6 && strncmp(line, "ORIGIN", 6) == 0)) {
if(reading_seq == 1 || genbank_end == 1 || *sctr > 0) {
if(line[0] == '>') {
strcpy(new_hdr, line+1);
new_hdr[strlen(new_hdr)-1] = '\0';
}
break;
}
if(line[0] == '>') {
strcpy(cur_hdr, line+1);
cur_hdr[strlen(cur_hdr)-1] = '\0';
}
reading_seq = 1;
}
else if(reading_seq == 1 && (line[0] == '/' && line[1] == '/')) {
reading_seq = 0;
genbank_end = 1;
}
else if(reading_seq == 1) {
if(strstr(line, "Expand") != NULL && strstr(line, "gap") != NULL) {
sscanf(strstr(line, "gap")+4, "%u", &gapsize);
if(gapsize < 1 || gapsize > MAX_LINE) {
fprintf(stderr, "Error: gap size in gbk file can't exceed line");
fprintf(stderr, " size.\n");
exit(54);
}
for(i = 0; i < gapsize; i++) line[i] = 'n';
line[i] = '\0';
}
for(i = 0; i < strlen(line); i++) {
if(line[i] < 'A' || line[i] > 'z') continue;
if(do_mask == 1 && mask_beg != -1 && line[i] != 'N' && line[i] != 'n') {
if(len - mask_beg >= MASK_SIZE) {
if(*nm == MAX_MASKS) {
fprintf(stderr, "Error: saw too many regions of 'N''s in the ");
fprintf(stderr, "sequence.\n");
exit(55);
}
mlist[*nm].begin = mask_beg;
mlist[*nm].end = len-1;
(*nm)++;
}
mask_beg = -1;
}
if(do_mask == 1 && mask_beg == -1 && (line[i] == 'N' || line[i] == 'n'))
mask_beg = len;
if(line[i] == 'g' || line[i] == 'G') { set(seq, bctr); gc_cont++; }
else if(line[i] == 't' || line[i] == 'T') {
set(seq, bctr);
set(seq, bctr+1);
}
else if(line[i] == 'c' || line[i] == 'C') {
set(seq, bctr+1);
gc_cont++;
}
else if(line[i] != 'a' && line[i] != 'A') {
set(seq, bctr+1);
set(useq, len);
}
bctr+=2; len++;
}
}
if(len+MAX_LINE >= MAX_SEQ) {
fprintf(stderr, "Sequence too long (max %d permitted).\n", MAX_SEQ);
exit(56);
}
}
if(len == 0) return -1;
*gc = ((double)gc_cont / (double)len);
*sctr = *sctr + 1;
return len;
}
/* Takes first word of header */
void calc_short_header(char *header, char *short_header, int sctr) {
int i;
strcpy(short_header, header);
for(i = 0; i < strlen(header); i++) {
if(header[i] == ' ' || header[i] == '\t' || header[i] == '\r' ||
header[i] == '\n') {
strncpy(short_header, header, i);
short_header[i] = '\0';
break;
}
}
if(i == 0) { sprintf(short_header, "Prodigal_Seq_%d", sctr); }
}
/* Takes rseq and fills it up with the rev complement of seq */
void rcom_seq(unsigned char *seq, unsigned char *rseq, unsigned char *useq,
int len) {
int i, slen=len*2;
for(i = 0; i < slen; i++)
if(test(seq, i) == 0) set(rseq, slen-i-1+(i%2==0?-1:1));
for(i = 0; i < len; i++) {
if(test(useq, i) == 1) {
toggle(rseq, slen-1-i*2);
toggle(rseq, slen-2-i*2);
}
}
}
/* Simple routines to say whether or not bases are */
/* a, c, t, g, starts, stops, etc. */
int is_a(unsigned char *seq, int n) {
int ndx = n*2;
if(test(seq, ndx) == 1 || test(seq, ndx+1) == 1) return 0;
return 1;
}
int is_c(unsigned char *seq, int n) {
int ndx = n*2;
if(test(seq, ndx) == 1 || test(seq, ndx+1) == 0) return 0;
return 1;
}
int is_g(unsigned char *seq, int n) {
int ndx = n*2;
if(test(seq, ndx) == 0 || test(seq, ndx+1) == 1) return 0;
return 1;
}
int is_t(unsigned char *seq, int n) {
int ndx = n*2;
if(test(seq, ndx) == 0 || test(seq, ndx+1) == 0) return 0;
return 1;
}
int is_n(unsigned char *useq, int n) {
if(test(useq, n) == 0) return 0;
return 1;
}
int is_stop(unsigned char *seq, int n, struct _training *tinf) {
/* TAG */
if(is_t(seq, n) == 1 && is_a(seq, n+1) == 1 && is_g(seq, n+2) == 1) {
if(tinf->trans_table == 6 || tinf->trans_table == 15 ||
tinf->trans_table == 16 || tinf->trans_table == 22) return 0;
return 1;
}
/* TGA */
if(is_t(seq, n) == 1 && is_g(seq, n+1) == 1 && is_a(seq, n+2) == 1) {
if((tinf->trans_table >= 2 && tinf->trans_table <= 5) ||
tinf->trans_table == 9 || tinf->trans_table == 10 ||
tinf->trans_table == 13 || tinf->trans_table == 14 ||
tinf->trans_table == 21 || tinf->trans_table == 25) return 0;
return 1;
}
/* TAA */
if(is_t(seq, n) == 1 && is_a(seq, n+1) == 1 && is_a(seq, n+2) == 1) {
if(tinf->trans_table == 6 || tinf->trans_table == 14) return 0;
return 1;
}
/* Code 2 */
if(tinf->trans_table == 2 && is_a(seq, n) == 1 && is_g(seq, n+1) == 1 &&
is_a(seq, n+2) == 1) return 1;
if(tinf->trans_table == 2 && is_a(seq, n) == 1 && is_g(seq, n+1) == 1 &&
is_g(seq, n+2) == 1) return 1;
/* Code 22 */
if(tinf->trans_table == 22 && is_t(seq, n) == 1 && is_c(seq, n+1) == 1 &&
is_a(seq, n+2) == 1) return 1;
/* Code 23 */
if(tinf->trans_table == 23 && is_t(seq, n) == 1 && is_t(seq, n+1) == 1 &&
is_a(seq, n+2) == 1) return 1;
return 0;
}
int is_start(unsigned char *seq, int n, struct _training *tinf) {
/* ATG */
if(is_a(seq, n) == 1 && is_t(seq, n+1) == 1 && is_g(seq, n+2) == 1) return 1;
/* Codes that only use ATG */
if(tinf->trans_table == 6 || tinf->trans_table == 10 ||
tinf->trans_table == 14 || tinf->trans_table == 15 ||
tinf->trans_table == 16 || tinf->trans_table == 22) return 0;
/* GTG */
if(is_g(seq, n) == 1 && is_t(seq, n+1) == 1 && is_g(seq, n+2) == 1) {
if(tinf->trans_table == 1 || tinf->trans_table == 3 ||
tinf->trans_table == 12 || tinf->trans_table == 22) return 0;
return 1;
}
/* TTG */
if(is_t(seq, n) == 1 && is_t(seq, n+1) == 1 && is_g(seq, n+2) == 1) {
if(tinf->trans_table < 4 || tinf->trans_table == 9 ||
(tinf->trans_table >= 21 && tinf->trans_table < 25)) return 0;
return 1;
}
/* We do not handle other initiation codons */
return 0;
}
int is_atg(unsigned char *seq, int n) {
if(is_a(seq, n) == 0 || is_t(seq, n+1) == 0 || is_g(seq, n+2) == 0) return 0;
return 1;
}
int is_gtg(unsigned char *seq, int n) {
if(is_g(seq, n) == 0 || is_t(seq, n+1) == 0 || is_g(seq, n+2) == 0) return 0;
return 1;
}
int is_ttg(unsigned char *seq, int n) {
if(is_t(seq, n) == 0 || is_t(seq, n+1) == 0 || is_g(seq, n+2) == 0) return 0;
return 1;
}
int is_gc(unsigned char *seq, int n) {
int ndx = n*2;
if(test(seq, ndx) != test(seq, ndx+1)) return 1;
return 0;
}
double gc_content(unsigned char *seq, int a, int b) {
double sum = 0.0, gc = 0.0;
int i;
for(i = a; i <= b; i++) {
if(is_g(seq, i) == 1 || is_c(seq, i) == 1) gc++;
sum++;
}
return gc/sum;
}
/* Returns a single amino acid for this position */
char amino(unsigned char *seq, int n, struct _training *tinf, int is_init) {
if(is_stop(seq, n, tinf) == 1) return '*';
if(is_start(seq, n, tinf) == 1 && is_init == 1) return 'M';
if(is_t(seq, n) == 1 && is_t(seq, n+1) == 1 && is_t(seq, n+2) == 1)
return 'F';
if(is_t(seq, n) == 1 && is_t(seq, n+1) == 1 && is_c(seq, n+2) == 1)
return 'F';
if(is_t(seq, n) == 1 && is_t(seq, n+1) == 1 && is_a(seq, n+2) == 1)
return 'L';
if(is_t(seq, n) == 1 && is_t(seq, n+1) == 1 && is_g(seq, n+2) == 1)
return 'L';
if(is_t(seq, n) == 1 && is_c(seq, n+1) == 1) return 'S';
if(is_t(seq, n) == 1 && is_a(seq, n+1) == 1 && is_t(seq, n+2) == 1)
return 'Y';
if(is_t(seq, n) == 1 && is_a(seq, n+1) == 1 && is_c(seq, n+2) == 1)
return 'Y';
if(is_t(seq, n) == 1 && is_a(seq, n+1) == 1 && is_a(seq, n+2) == 1) {
if(tinf->trans_table == 6) return 'Q';
if(tinf->trans_table == 14) return 'Y';
}
if(is_t(seq, n) == 1 && is_a(seq, n+1) == 1 && is_g(seq, n+2) == 1) {
if(tinf->trans_table == 6 || tinf->trans_table == 15) return 'Q';
if(tinf->trans_table == 22) return 'L';
}
if(is_t(seq, n) == 1 && is_g(seq, n+1) == 1 && is_t(seq, n+2) == 1)
return 'C';
if(is_t(seq, n) == 1 && is_g(seq, n+1) == 1 && is_c(seq, n+2) == 1)
return 'C';
if(is_t(seq, n) == 1 && is_g(seq, n+1) == 1 && is_a(seq, n+2) == 1) {
if(tinf->trans_table == 25) return 'G';
else return 'W';
}
if(is_t(seq, n) == 1 && is_g(seq, n+1) == 1 && is_g(seq, n+2) == 1)
return 'W';
if(is_c(seq, n) == 1 && is_t(seq, n+1) == 1 && is_t(seq, n+2) == 1) {
if(tinf->trans_table == 3) return 'T';
return 'L';
}
if(is_c(seq, n) == 1 && is_t(seq, n+1) == 1 && is_c(seq, n+2) == 1) {
if(tinf->trans_table == 3) return 'T';
return 'L';
}
if(is_c(seq, n) == 1 && is_t(seq, n+1) == 1 && is_a(seq, n+2) == 1) {
if(tinf->trans_table == 3) return 'T';
return 'L';
}
if(is_c(seq, n) == 1 && is_t(seq, n+1) == 1 && is_g(seq, n+2) == 1) {
if(tinf->trans_table == 3) return 'T';
if(tinf->trans_table == 12) return 'S';
return 'L';
}
if(is_c(seq, n) == 1 && is_c(seq, n+1) == 1) return 'P';
if(is_c(seq, n) == 1 && is_a(seq, n+1) == 1 && is_t(seq, n+2) == 1)
return 'H';
if(is_c(seq, n) == 1 && is_a(seq, n+1) == 1 && is_c(seq, n+2) == 1)
return 'H';
if(is_c(seq, n) == 1 && is_a(seq, n+1) == 1 && is_a(seq, n+2) == 1)
return 'Q';
if(is_c(seq, n) == 1 && is_a(seq, n+1) == 1 && is_g(seq, n+2) == 1)
return 'Q';
if(is_c(seq, n) == 1 && is_g(seq, n+1) == 1) return 'R';
if(is_a(seq, n) == 1 && is_t(seq, n+1) == 1 && is_t(seq, n+2) == 1)
return 'I';
if(is_a(seq, n) == 1 && is_t(seq, n+1) == 1 && is_c(seq, n+2) == 1)
return 'I';
if(is_a(seq, n) == 1 && is_t(seq, n+1) == 1 && is_a(seq, n+2) == 1) {
if(tinf->trans_table == 2 || tinf->trans_table == 3 ||
tinf->trans_table == 5 || tinf->trans_table == 13 ||
tinf->trans_table == 21) return 'M';
return 'I';
}
if(is_a(seq, n) == 1 && is_t(seq, n+1) == 1 && is_g(seq, n+2) == 1)
return 'M';
if(is_a(seq, n) == 1 && is_c(seq, n+1) == 1) return 'T';
if(is_a(seq, n) == 1 && is_a(seq, n+1) == 1 && is_t(seq, n+2) == 1)
return 'N';
if(is_a(seq, n) == 1 && is_a(seq, n+1) == 1 && is_c(seq, n+2) == 1)
return 'N';
if(is_a(seq, n) == 1 && is_a(seq, n+1) == 1 && is_a(seq, n+2) == 1) {
if(tinf->trans_table == 9 || tinf->trans_table == 14 ||
tinf->trans_table == 21) return 'N';
return 'K';
}
if(is_a(seq, n) == 1 && is_a(seq, n+1) == 1 && is_g(seq, n+2) == 1)
return 'K';
if(is_a(seq, n) == 1 && is_g(seq, n+1) == 1 && is_t(seq, n+2) == 1)
return 'S';
if(is_a(seq, n) == 1 && is_g(seq, n+1) == 1 && is_c(seq, n+2) == 1)
return 'S';
if(is_a(seq, n) == 1 && is_g(seq, n+1) == 1 && (is_a(seq, n+2) == 1 ||
is_g(seq, n+2) == 1)) {
if(tinf->trans_table == 13) return 'G';
if(tinf->trans_table == 5 || tinf->trans_table == 9 ||
tinf->trans_table == 14 || tinf->trans_table == 21) return 'S';
return 'R';
}
if(is_g(seq, n) == 1 && is_t(seq, n+1) == 1) return 'V';
if(is_g(seq, n) == 1 && is_c(seq, n+1) == 1) return 'A';
if(is_g(seq, n) == 1 && is_a(seq, n+1) == 1 && is_t(seq, n+2) == 1)
return 'D';
if(is_g(seq, n) == 1 && is_a(seq, n+1) == 1 && is_c(seq, n+2) == 1)
return 'D';
if(is_g(seq, n) == 1 && is_a(seq, n+1) == 1 && is_a(seq, n+2) == 1)
return 'E';
if(is_g(seq, n) == 1 && is_a(seq, n+1) == 1 && is_g(seq, n+2) == 1)
return 'E';
if(is_g(seq, n) == 1 && is_g(seq, n+1) == 1) return 'G';
return 'X';
}
/* Converts an amino acid letter to a numerical value */
int amino_num(char aa) {
if(aa == 'a' || aa == 'A') return 0;
if(aa == 'c' || aa == 'C') return 1;
if(aa == 'd' || aa == 'D') return 2;
if(aa == 'e' || aa == 'E') return 3;
if(aa == 'f' || aa == 'F') return 4;
if(aa == 'g' || aa == 'G') return 5;
if(aa == 'h' || aa == 'H') return 6;
if(aa == 'i' || aa == 'I') return 7;
if(aa == 'k' || aa == 'K') return 8;
if(aa == 'l' || aa == 'L') return 9;
if(aa == 'm' || aa == 'M') return 10;
if(aa == 'n' || aa == 'N') return 11;
if(aa == 'p' || aa == 'P') return 12;
if(aa == 'q' || aa == 'Q') return 13;
if(aa == 'r' || aa == 'R') return 14;
if(aa == 's' || aa == 'S') return 15;
if(aa == 't' || aa == 'T') return 16;
if(aa == 'v' || aa == 'V') return 17;
if(aa == 'w' || aa == 'W') return 18;
if(aa == 'y' || aa == 'Y') return 19;
return -1;
}
/* Converts a numerical value to an amino acid letter */
char amino_letter(int num) {
if(num == 0) return 'A';
if(num == 1) return 'C';
if(num == 2) return 'D';
if(num == 3) return 'E';
if(num == 4) return 'F';
if(num == 5) return 'G';
if(num == 6) return 'H';
if(num == 7) return 'I';
if(num == 8) return 'K';
if(num == 9) return 'L';
if(num == 10) return 'M';
if(num == 11) return 'N';
if(num == 12) return 'P';
if(num == 13) return 'Q';
if(num == 14) return 'R';
if(num == 15) return 'S';
if(num == 16) return 'T';
if(num == 17) return 'V';
if(num == 18) return 'W';
if(num == 19) return 'Y';
return 'X';
}
/* Returns the corresponding frame on the reverse strand */
int rframe(int fr, int slen) {
int md = slen%3-1;
if(md == 0) md = 3;
return (md-fr);
}
/* Simple 3-way max function */
int max_fr(int n1, int n2, int n3) {
if(n1 > n2)
if(n1 > n3) return 0; else return 2;
else
if(n2 > n3) return 1; else return 2;
}
/*******************************************************************************
Creates a GC frame plot for a given sequence. This is simply a string with
the highest GC content frame for a window centered on position for every
position in the sequence.
*******************************************************************************/
int *calc_most_gc_frame(unsigned char *seq, int slen) {
int i, j, *fwd, *bwd, *tot;
int win, *gp;
gp = (int *)malloc(slen*sizeof(double));
fwd = (int *)malloc(slen*sizeof(int));
bwd = (int *)malloc(slen*sizeof(int));
tot = (int *)malloc(slen*sizeof(int));
if(fwd == NULL || bwd == NULL || gp == NULL || tot == NULL) return NULL;
for(i = 0; i < slen; i++) { fwd[i] = 0; bwd[i] = 0; tot[i] = 0; gp[i] = -1; }
for(i = 0; i < 3; i++) {
for(j = 0 + i; j < slen; j++) {
if(j < 3) fwd[j] = is_gc(seq, j);
else fwd[j] = fwd[j-3] + is_gc(seq, j);
if(j < 3) bwd[slen-j-1] = is_gc(seq, slen-j-1);
else bwd[slen-j-1] = bwd[slen-j+2] + is_gc(seq, slen-j-1);
}
}
for(i = 0; i < slen; i++) {
tot[i] = fwd[i] + bwd[i] - is_gc(seq, i);
if(i - WINDOW/2 >= 0) tot[i] -= fwd[i-WINDOW/2];
if(i + WINDOW/2 < slen) tot[i] -= bwd[i+WINDOW/2];
}
free(fwd); free(bwd);
for(i = 0; i < slen-2; i+=3) {
win = max_fr(tot[i], tot[i+1], tot[i+2]);
for(j = 0; j < 3; j++) gp[i+j] = win;
}
free(tot);
return gp;
}
/* Converts a word of size len to a number */
int mer_ndx(int len, unsigned char *seq, int pos) {
int i, ndx = 0;
for(i = 0; i < 2*len; i++) ndx |= (test(seq, pos*2+i)<<i);
return ndx;
}
/* Gives a text string for a start */
void start_text(char *st, int type) {
if(type == 0) st[0] = 'A';
else if(type == 1) st[0] = 'G';
else if(type == 2) st[0] = 'T';
st[1] = 'T';
st[2] = 'G';
st[3] = '\0';
}
/* Gives a text string for a mer of size 'len' (useful for outputting motifs) */
void mer_text(char *qt, int len, int ndx) {
int i, val;
char letters[4] = { 'A', 'G', 'C', 'T' };
if(len == 0) strcpy(qt, "None");
else {
for(i = 0; i < len; i++) {
val = (ndx&(1<<(2*i))) + (ndx&(1<<(2*i+1)));
val >>= (i*2);
qt[i] = letters[val];
}
qt[i] = '\0';
}
}
/* Builds a 'len'-mer background for whole sequence */
void calc_mer_bg(int len, unsigned char *seq, unsigned char *rseq, int slen,
double *bg) {
int i, glob = 0, size = 1;
int *counts;
for(i = 1; i <= len; i++) size *= 4;
counts = (int *)malloc(size * sizeof(int));
for(i = 0; i < size; i++) counts[i] = 0;
for(i = 0; i < slen-len+1; i++) {
counts[mer_ndx(len, seq, i)]++;
counts[mer_ndx(len, rseq, i)]++;
glob+=2;
}
for(i = 0; i < size; i++) bg[i] = (double)((counts[i]*1.0)/(glob*1.0));
free(counts);
}
/*******************************************************************************
Finds the highest-scoring region similar to AGGAGG in a given stretch of
sequence upstream of a start.
*******************************************************************************/
int shine_dalgarno_exact(unsigned char *seq, int pos, int start, double *rwt) {
int i, j, k, mism, rdis, limit, max_val, cur_val = 0;
double match[6], cur_ctr, dis_flag;
limit = imin(6, start-4-pos);
for(i = 0; i < 6; i++) match[i] = -10.0;
/* Compare the 6-base region to AGGAGG */
for(i = 0; i < limit; i++) {
if(pos + i >= 0) {
if(i%3 == 0 && is_a(seq, pos+i) == 1) match[i] = 2.0;
else if(i%3 != 0 && is_g(seq, pos+i) == 1) match[i] = 3.0;
}
}
/* Find the maximally scoring motif */
max_val = 0;
for(i = limit; i >= 3; i--) {
for(j = 0; j <= limit-i; j++) {
cur_ctr = -2.0;
mism = 0;
for(k = j; k < j+i; k++) {
cur_ctr += match[k];
if(match[k] < 0.0) mism++;
}
if(mism > 0) continue;
rdis = start - (pos+j+i);
if(rdis < 5 && i < 5) dis_flag = 2;
else if(rdis < 5 && i >= 5) dis_flag = 1;
else if(rdis > 10 && rdis <= 12 && i < 5) dis_flag = 1;
else if(rdis > 10 && rdis <= 12 && i >= 5) dis_flag = 2;
else if(rdis >= 13) { dis_flag = 3; }
else dis_flag = 0;
if(rdis > 15 || cur_ctr < 6.0) continue;
/* Exact-Matching RBS Motifs */
if(cur_ctr < 6.0) cur_val = 0;
else if(cur_ctr == 6.0 && dis_flag == 2) cur_val = 1;
else if(cur_ctr == 6.0 && dis_flag == 3) cur_val = 2;
else if(cur_ctr == 8.0 && dis_flag == 3) cur_val = 3;
else if(cur_ctr == 9.0 && dis_flag == 3) cur_val = 3;
else if(cur_ctr == 6.0 && dis_flag == 1) cur_val = 6;
else if(cur_ctr == 11.0 && dis_flag == 3) cur_val = 10;
else if(cur_ctr == 12.0 && dis_flag == 3) cur_val = 10;
else if(cur_ctr == 14.0 && dis_flag == 3) cur_val = 10;
else if(cur_ctr == 8.0 && dis_flag == 2) cur_val = 11;
else if(cur_ctr == 9.0 && dis_flag == 2) cur_val = 11;
else if(cur_ctr == 8.0 && dis_flag == 1) cur_val = 12;
else if(cur_ctr == 9.0 && dis_flag == 1) cur_val = 12;
else if(cur_ctr == 6.0 && dis_flag == 0) cur_val = 13;
else if(cur_ctr == 8.0 && dis_flag == 0) cur_val = 15;
else if(cur_ctr == 9.0 && dis_flag == 0) cur_val = 16;
else if(cur_ctr == 11.0 && dis_flag == 2) cur_val = 20;
else if(cur_ctr == 11.0 && dis_flag == 1) cur_val = 21;
else if(cur_ctr == 11.0 && dis_flag == 0) cur_val = 22;
else if(cur_ctr == 12.0 && dis_flag == 2) cur_val = 20;
else if(cur_ctr == 12.0 && dis_flag == 1) cur_val = 23;
else if(cur_ctr == 12.0 && dis_flag == 0) cur_val = 24;
else if(cur_ctr == 14.0 && dis_flag == 2) cur_val = 25;
else if(cur_ctr == 14.0 && dis_flag == 1) cur_val = 26;
else if(cur_ctr == 14.0 && dis_flag == 0) cur_val = 27;
if(rwt[cur_val] < rwt[max_val]) continue;
if(rwt[cur_val] == rwt[max_val] && cur_val < max_val) continue;
max_val = cur_val;
}
}
return max_val;
}
/*******************************************************************************
Finds the highest-scoring region similar to AGGAGG in a given stretch of
sequence upstream of a start. Only considers 5/6-mers with 1 mismatch.
*******************************************************************************/
int shine_dalgarno_mm(unsigned char *seq, int pos, int start, double *rwt) {
int i, j, k, mism, rdis, limit, max_val, cur_val = 0;
double match[6], cur_ctr, dis_flag;
limit = imin(6, start-4-pos);
for(i = 0; i < 6; i++) match[i] = -10.0;
/* Compare the 6-base region to AGGAGG */
for(i = 0; i < limit; i++) {
if(pos+i >= 0) {
if(i % 3 == 0) {
if(is_a(seq, pos+i) == 1) match[i] = 2.0;
else match[i] = -3.0;
}
else {
if(is_g(seq, pos+i) == 1) match[i] = 3.0;
else match[i] = -2.0;
}
}
}
/* Find the maximally scoring motif */
max_val = 0;
for(i = limit; i >= 5; i--) {
for(j = 0; j <= limit-i; j++) {
cur_ctr = -2.0;
mism = 0;
for(k = j; k < j+i; k++) {
cur_ctr += match[k];
if(match[k] < 0.0) mism++;
if(match[k] < 0.0 && (k <= j+1 || k >= j+i-2)) cur_ctr -= 10.0;
}
if(mism != 1) continue;
rdis = start - (pos+j+i);
if(rdis < 5) { dis_flag = 1; }
else if(rdis > 10 && rdis <= 12) { dis_flag = 2; }
else if(rdis >= 13) { dis_flag = 3; }
else dis_flag = 0;
if(rdis > 15 || cur_ctr < 6.0) continue;
/* Single-Mismatch RBS Motifs */
if(cur_ctr < 6.0) cur_val = 0;
else if(cur_ctr == 6.0 && dis_flag == 3) cur_val = 2;
else if(cur_ctr == 7.0 && dis_flag == 3) cur_val = 2;
else if(cur_ctr == 9.0 && dis_flag == 3) cur_val = 3;
else if(cur_ctr == 6.0 && dis_flag == 2) cur_val = 4;
else if(cur_ctr == 6.0 && dis_flag == 1) cur_val = 5;
else if(cur_ctr == 6.0 && dis_flag == 0) cur_val = 9;
else if(cur_ctr == 7.0 && dis_flag == 2) cur_val = 7;
else if(cur_ctr == 7.0 && dis_flag == 1) cur_val = 8;
else if(cur_ctr == 7.0 && dis_flag == 0) cur_val = 14;
else if(cur_ctr == 9.0 && dis_flag == 2) cur_val = 17;
else if(cur_ctr == 9.0 && dis_flag == 1) cur_val = 18;
else if(cur_ctr == 9.0 && dis_flag == 0) cur_val = 19;
if(rwt[cur_val] < rwt[max_val]) continue;
if(rwt[cur_val] == rwt[max_val] && cur_val < max_val) continue;
max_val = cur_val;
}
}
return max_val;
}
/* Returns the minimum of two numbers */
int imin(int x, int y) {
if(x < y) return x;
return y;
}