-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_MSWX_MSWEP_reanalysis.py
executable file
·176 lines (151 loc) · 8.87 KB
/
main_MSWX_MSWEP_reanalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = "Hylke E. Beck"
__email__ = "[email protected]"
__date__ = "March 2022"
import os, sys, glob, time, pdb
import pandas as pd
import numpy as np
import netCDF4
from tools import *
from skimage.transform import resize
import matplotlib.pyplot as plt
import rasterio
import shutil
from datetime import timedelta
# Load configuration file
config = load_config(sys.argv[1])
def main():
# Output dates
year_start,year_end = 1979,2021
out_dates_dly = pd.date_range(start=datetime(year_start,1,1), end=datetime(year_end+1,1,1)-pd.Timedelta(days=1), freq='D')
# Load template map
dset = netCDF4.Dataset(config['templatemap_path'])
template_lat = np.array(dset.variables['lat'][:])
template_lon = np.array(dset.variables['lon'][:])
template_res = template_lon[1]-template_lon[0]
varname = list(dset.variables.keys())[-1]
template_np = np.array(dset.variables[varname][:])
# Determine map sizes
mapsize_global = (np.round(180/template_res).astype(int),np.round(360/template_res).astype(int))
mapsize_template = template_np.shape
row_upper,col_left = latlon2rowcol(template_lat[0],template_lon[0],template_res,90,-180)
# Load elevation data, append zeros to top and bottom to make global, and resample to template resolution
elev = np.zeros((21600,43200),dtype=np.single)
src = rasterio.open(os.path.join(config['gmted2010_folder'],'elevation_1KMmn_GMTEDmn.tif'))
elev[720:17520,:] = src.read(1)
src.close()
elev_global = imresize_mean(elev,mapsize_global)
elev_template = elev_global[row_upper:row_upper+len(template_lat),col_left:col_left+len(template_lon)]
# Prepare temperature and air pres downscaling
tmp = imresize_mean(elev_global,(1800,3600)) # Resample to dimensions of input data
tmp = resize(tmp,mapsize_global,order=1,mode='edge',anti_aliasing=False)
elev_delta = elev_global-tmp
temp_delta = -6.5*elev_delta/1000 # Simple 6.5 degrees C/km lapse rate
pres_delta = 1013*((((293-0.0065*elev_global)/293)**5.26)-(((293-0.0065*tmp)/293)**5.26)) # Allen et al. (1994) equation 7
lat_global = np.repeat(np.resize(np.arange(90-template_res/2,-90-template_res/2,-template_res),(1800,1)),mapsize_global[1],axis=1)
lat_template = lat_global[row_upper:row_upper+len(template_lat),col_left:col_left+len(template_lon)]
# Check if output already exists in scratch folder or output folder
scratchoutdir = os.path.join(config['scratch_folder'],'MSWX_MSWEP_reanalysis')
finaloutdir = os.path.join(config['output_folder'],'MSWX_MSWEP_reanalysis')
if (config['delete_existing']==False) & (os.path.isfile(os.path.join(finaloutdir,'ta.nc'))==True):
print('Already processed, skipping this model')
quit()
# Initialize output files
if os.path.isdir(scratchoutdir)==False:
os.makedirs(scratchoutdir)
ncfile = {}
ncfile['ta'] = initialize_netcdf(os.path.join(scratchoutdir,'ta.nc'),template_lat,template_lon,'ta','degree_Celsius',1)
ncfile['pr'] = initialize_netcdf(os.path.join(scratchoutdir,'pr.nc'),template_lat,template_lon,'pr','mm d-1',1)
ncfile['et'] = initialize_netcdf(os.path.join(scratchoutdir,'et.nc'),template_lat,template_lon,'et','mm d-1',1)
ncfile['ew'] = initialize_netcdf(os.path.join(scratchoutdir,'ew.nc'),template_lat,template_lon,'ew','mm d-1',1)
ncfile['es'] = initialize_netcdf(os.path.join(scratchoutdir,'es.nc'),template_lat,template_lon,'es','mm d-1',1)
# Loop over days of input file
for ii in np.arange(len(out_dates_dly)):
current_date = out_dates_dly[ii]
# Data missing on some days
if (current_date==datetime(1979,1,1)) | (current_date==datetime(1979,1,31)):
current_date = current_date+timedelta(days=1)
# Open input files
print('Processing '+datetime.strftime(current_date,'%Y%j'))
t0 = time.time()
invars = {'Temp','Tmin','Tmax','RelHum','Wind','Pres','SWd','LWd','P'}
dset = {}
for invar in invars:
file = os.path.join(config['mswx_folder'],'Past',invar,'Daily',datetime.strftime(current_date,'%Y%j')+'.nc')
dset[invar] = netCDF4.Dataset(file.replace('Temp',invar))
file_pr1 = os.path.join(config['mswep_folder'],'Past','Daily',datetime.strftime(current_date,'%Y%j')+'.nc')
file_pr2 = os.path.join(config['mswep_folder'],'NRT','Daily',datetime.strftime(current_date,'%Y%j')+'.nc')
if os.path.isfile(file_pr1):
dset['P'] = netCDF4.Dataset(file_pr1) # mm/d
else:
dset['P'] = netCDF4.Dataset(file_pr2) # mm/d
# Read data from input files
data = {}
data['tmean'] = np.squeeze(np.array(dset['Temp'].variables['air_temperature'])) # degrees C
data['tmin'] = np.squeeze(np.array(dset['Tmin'].variables['air_temperature'])) # degrees C
data['tmax'] = np.squeeze(np.array(dset['Tmax'].variables['air_temperature'])) # degrees C
data['relhum'] = np.squeeze(np.array(dset['RelHum'].variables['relative_humidity'])) # %
data['wind'] = np.squeeze(np.array(dset['Wind'].variables['wind_speed'])) # m/s
data['pres'] = np.squeeze(np.array(dset['Pres'].variables['surface_pressure']))/100 # mbar
data['swd'] = np.squeeze(np.array(dset['SWd'].variables['downward_shortwave_radiation'])) # W/m2
data['lwd'] = np.squeeze(np.array(dset['LWd'].variables['downward_longwave_radiation'])) # W/m2
data['pr'] = np.squeeze(np.array(dset['P'].variables['precipitation'])) # mm/d
# Simple lapse rate downscaling of temperature and air pressure, nearest-neighbor resampling of other vars
for key in data.keys():
if (key=='tmean') | (key=='tmin') | (key=='tmax'):
data[key] = resize(data[key],mapsize_global,order=1,mode='edge',anti_aliasing=False)
data[key] = data[key]+temp_delta
if key=='pres':
data[key] = resize(data[key],mapsize_global,order=1,mode='edge',anti_aliasing=False)
data[key] = data[key]+pres_delta
else:
data[key] = resize(data[key],mapsize_global,order=0,mode='edge',anti_aliasing=False)
# Subset data to template region
for key in data.keys():
data[key] = data[key][row_upper:row_upper+len(template_lat),col_left:col_left+len(template_lon)]
# Compute potential evaporation
albedo = {'et':0.23,'ew':0.05,'es':0.15}
factor = {'et':1,'ew':0.5,'es':0.75}
doy = int(datetime.strftime(current_date,'%j'))
pet = potential_evaporation(data,albedo,factor,doy,lat_template,elev_template)
# Write data to output netCDFs
time_value = (current_date-pd.to_datetime(datetime(1979, 1, 1))).total_seconds()/86400
index = np.where(out_dates_dly==current_date)[0][0]
ncfile['pr'].variables['time'][index] = time_value
ncfile['pr'].variables['pr'][index,:,:] = data['pr']
ncfile['ta'].variables['time'][index] = time_value
ncfile['ta'].variables['ta'][index,:,:] = data['tmean']
ncfile['et'].variables['time'][index] = time_value
ncfile['et'].variables['et'][index,:,:] = pet['et']
ncfile['ew'].variables['time'][index] = time_value
ncfile['ew'].variables['ew'][index,:,:] = pet['ew']
ncfile['es'].variables['time'][index] = time_value
ncfile['es'].variables['es'][index,:,:] = pet['es']
# Generate figures to verify output
if ii==0:
makefig('figures','et',pet['et'],0,12)
makefig('figures','ew',pet['ew'],0,12)
makefig('figures','es',pet['es'],0,12)
for key in data.keys():
makefig('figures',key,data[key],np.min(data[key]),np.max(data[key]))
makefig('figures','elev_template',elev_template,0,6000)
# Close input files
for key in dset.keys():
dset[key].close()
print("Time elapsed is "+str(time.time()-t0)+" sec")
# Close output files
for key in ncfile.keys():
ncfile[key].close()
# Move output from scratch folder to output folder
print('-------------------------------------------------------------------------------')
if os.path.isdir(finaloutdir)==False:
os.makedirs(finaloutdir)
for file in glob.glob(os.path.join(scratchoutdir,'*')):
t0 = time.time()
print('Moving '+os.path.basename(file)+' ('+str(round(os.path.getsize(file)/10**9))+' GB) to '+finaloutdir)
shutil.copy(file, finaloutdir)
print("Time elapsed is "+str(time.time()-t0)+" sec")
shutil.rmtree(scratchoutdir)
if __name__ == '__main__':
main()