forked from espnet/espnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspk_inference.py
executable file
·274 lines (228 loc) · 7.67 KB
/
spk_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/usr/bin/env python3
import argparse
import logging
import sys
from distutils.version import LooseVersion
from itertools import groupby
from pathlib import Path
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
from typeguard import check_argument_types, check_return_type
from espnet2.fileio.npy_scp import NpyScpWriter
from espnet2.tasks.spk import SpeakerTask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool, str2triple_str, str_or_none
from espnet.utils.cli_utils import get_commandline_args
class Speech2Embedding:
"""Speech2Embedding class
Examples:
>>> import soundfile
>>> speech2spkembed = Speech2Embedding("spk_config.yml", "spk.pth")
>>> audio, rate = soundfile.read("speech.wav")
>>> speech2spkembed(audio)
"""
def __init__(
self,
train_config: Union[Path, str] = None,
model_file: Union[Path, str] = None,
device: str = "cpu",
dtype: str = "float32",
batch_size: int = 1,
):
assert check_argument_types()
spk_model, spk_train_args = SpeakerTask.build_model_from_file(
train_config, model_file, device
)
self.spk_model = spk_model.eval()
self.spk_train_args = spk_train_args
self.device = device
self.dtype = dtype
self.batch_size = batch_size
@torch.no_grad()
def __call__(self, speech: Union[torch.Tensor, np.ndarray]) -> torch.Tensor:
"""Inference
Args:
speech: Input speech data
Returns:
spk_embedding
"""
assert check_argument_types()
# Input as audio signal
if isinstance(speech, np.ndarray):
speech = torch.tensor(speech)
# data: (Nsamples,) -> (1, Nsamples)
speech = speech.unsqueeze(0).to(getattr(torch, self.dtype))
logging.info("speech length: " + str(speech.size(1)))
batch = {"speech": speech, "extract_embd": True}
# a. To device
batch = to_device(batch, device=self.device)
# b. Forward the model embedding extraction
output = self.spk_model(**batch)
return output
@staticmethod
def from_pretrained(
model_tag: Optional[str] = None,
**kwargs: Optional[Any],
):
"""Build Speech2Embedding instance from the pretrained model.
Args:
model_tag (Optional[str]): Model tag of the pretrained models.
Currently, the tags of espnet_model_zoo are supported.
Returns:
Speech2Text: Speech2Embedding instance.
"""
if model_tag is not None:
try:
from espnet_model_zoo.downloader import ModelDownloader
except ImportError:
logging.error(
"`espnet_model_zoo` is not installed. "
"Please install via `pip install -U espnet_model_zoo`."
)
raise
d = ModelDownloader()
kwargs.update(**d.download_and_unpack(model_tag))
return Speech2Embedding(**kwargs)
def inference(
output_dir: str,
batch_size: int,
dtype: str,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
train_config: Optional[str],
model_file: Optional[str],
model_tag: Optional[str],
):
assert check_argument_types()
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2embedding
speech2embedding_kwargs = dict(
batch_size=batch_size,
dtype=dtype,
train_config=train_config,
model_file=model_file,
)
speech2embedding = Speech2Embedding.from_pretrained(
model_tag=model_tag,
**speech2embedding_kwargs,
)
# 3. Build data-iterator
loader = SpeakerTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=SpeakerTask.build_preprocess_fn(
speech2embedding.spk_train_args, False
),
collate_fn=SpeakerTask.build_colate_fn(speech2embedding.spk_train_args, False),
inference=True,
)
# 4. Start for-loop
with NpyScpWriter(output_dir / "embed", output_dir / "embed.scp") as writer:
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
result = speech2embedding(**batch)
# Only supporting batch_size==1
key = keys[0]
writer[key] = result.cpu().numpy()
def get_parser():
parser = config_argparse.ArgumentParser(
description="Speaker Embedding Extraction",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--train_config",
type=str,
help="Speaker model training configuration",
)
group.add_argument(
"--model_file",
type=str,
help="Speaker model parameter file",
)
group.add_argument(
"--model_tag",
type=str,
help="Pretrained model tag. If specify this option, *_train_config and "
"*_file will be overwritten",
)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()