-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRIGOR_script.py
287 lines (228 loc) · 11.7 KB
/
RIGOR_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import one.alf.io as alfio
import matplotlib.pyplot as plt
from pathlib import Path
from ibllib.ephys.ephysqc import phy_model_from_ks2_path, spike_sorting_metrics_ks2
from phylib.io.alf import EphysAlfCreator
from ibllib.pipes.ephys_tasks import SpikeSorting
import numpy as np
from matplotlib import gridspec
from brainbox.processing import bincount2D, compute_cluster_average
from neuropixel import NP2Converter
import spikeglx
from ibldsp import voltage, utils
import scipy
import pandas as pd
import neuropixel
MAX_AP_RMS = 40
MAX_LFP_DERIVATIVE = 1
MIN_NEURONS_PER_CHANNEL = 0.1
def RIGOR_metrics(spikesorting_path, raw_data_path, save_path=None, recompute=False):
spikesorting_path = Path(spikesorting_path)
raw_data_path = Path(raw_data_path)
assert spikesorting_path.exists(), 'Spike sorting path given does not exist'
assert raw_data_path.exists(), 'Raw data path given does not exist'
if save_path is None:
save_path = spikesorting_path.joinpath('RIGOR_ibl')
save_path.mkdir(exist_ok=True, parents=True)
ap_file = next(raw_data_path.glob('*ap.*bin'), None)
assert ap_file, 'Could not find raw ap ephys data file in format .bin or .cbin'
lf_file = next(raw_data_path.glob('*lf.*bin'), None)
if lf_file is None:
print('Raw lfp data not found, computing LFP data from AP data for 600s snippet')
conv = NP2Converter(ap_file, compress=False)
conv.init_params(nsamples=int(600 * conv.sr.fs))
conv._process_NP21(offset=int(conv.sr.ns / 2), assert_shanks=False)
lf_file = next(raw_data_path.glob('*lf.*bin'), None)
# Compute metrics on ap band
print('Computing metrics on raw ap data')
compute_ap_metrics(ap_file, save_path, recompute=recompute)
# Compute metrics on lf band
print('Computing metrics on raw lfp data')
compute_lfp_metrics(lf_file, save_path, recompute=recompute)
# Compute metric a la IBL
print('Computing spikesorting metrics')
m = phy_model_from_ks2_path(ks2_path=spikesorting_path, bin_path=raw_data_path)
ac = EphysAlfCreator(m)
ac.convert(save_path, label=None, force=True, ampfactor=SpikeSorting._sample2v(ap_file))
# set depths to spike_depths to catch cases where it can't be computed from pc features (e.g in case of KS3)
m.depths = np.load(save_path.joinpath('spikes.depths.npy'))
c = spike_sorting_metrics_ks2(ks2_path=spikesorting_path, m=m)
c.to_parquet(Path(save_path).joinpath('clusters.metrics.pqt'))
# If it is four shanks should we split?
# Read in the metadata, figure out which channels belong to which shank
meta = spikeglx.read_meta_data(ap_file.with_suffix('.meta'))
chn_info = spikeglx._map_channels_from_meta(meta)
n_shanks = np.unique(chn_info['shank']).astype(np.int16)
if len(n_shanks) > 1:
for sh in n_shanks:
chn_idx = np.where(chn_info['shank'] == sh)[0]
get_metrics(save_path, chn_idx, shank=sh)
else:
get_metrics(save_path)
def compute_ap_metrics(ap_file, save_path, recompute=False):
save_file = save_path.joinpath('_iblqc_ephysChannels.apRMS.npy')
if recompute is False and save_file.exists():
return
sr = spikeglx.Reader(ap_file)
nc = sr.nc - sr.nsync
BATCHES_SPACING = 300
TMIN = 40
SAMPLE_LENGTH = 1
th = sr.geometry
if sr.meta.get('NP2.4_shank', None) is not None:
h = neuropixel.trace_header(sr.major_version, nshank=4)
h = neuropixel.split_trace_header(h, shank=int(sr.meta.get('NP2.4_shank')))
else:
h = neuropixel.trace_header(sr.major_version, nshank=np.unique(th['shank']).size)
t0s = np.arange(TMIN, sr.rl - SAMPLE_LENGTH, BATCHES_SPACING)
all_rms = np.zeros((2, nc, t0s.shape[0]))
for i, t0 in enumerate(t0s):
sl = slice(int(t0 * sr.fs), int((t0 + SAMPLE_LENGTH) * sr.fs))
raw = sr[sl, :-sr.nsync].T
destripe = voltage.destripe(raw, fs=sr.fs, h=h)
all_rms[0, :, i] = utils.rms(raw)
all_rms[1, :, i] = utils.rms(destripe)
ap_rms = np.median(all_rms, axis=-1)
np.save(save_file, ap_rms)
def compute_lfp_metrics(lf_file, save_path, recompute=False):
save_file = save_path.joinpath('lfp_metrics.pqt')
if recompute is False and save_file.exists():
return
LFP_RESAMPLE_FACTOR = 10
LFP_BAND = [20, 80]
THETA_BAND = [6, 12]
BATCHES_SPACING = 200
TMIN = 40
SAMPLE_LENGTH = 20
sr = spikeglx.Reader(lf_file)
t0s = np.arange(TMIN, sr.rl - SAMPLE_LENGTH, BATCHES_SPACING)
th = sr.geometry
if sr.meta.get('NP2.4_shank', None) is not None and sr.meta.get('nSavedChans', 385) < 385:
h = neuropixel.trace_header(sr.major_version, nshank=4)
h = neuropixel.split_trace_header(h, shank=int(sr.meta.get('NP2.4_shank')))
else:
h = neuropixel.trace_header(sr.major_version, nshank=np.unique(th['shank']).size)
for j, t0 in enumerate(t0s):
sl = slice(int(t0 * sr.fs), int((t0 + SAMPLE_LENGTH) * sr.fs))
raw = sr[sl, :-sr.nsync].T
destripe = voltage.destripe_lfp(raw, fs=sr.fs, h=h, channel_labels=True)
lfp = scipy.signal.decimate(destripe, LFP_RESAMPLE_FACTOR, axis=1, ftype='fir')
f, pow = scipy.signal.periodogram(lfp, fs=250, scaling='density')
if j == 0:
rms_lf_band, rms_theta_band = (np.zeros((lfp.shape[0], len(t0s))) for i in range(2))
rms_lf_band[:, j] = np.nanmean(
10 * np.log10(pow[:, np.logical_and(f >= LFP_BAND[0], f <= LFP_BAND[1])]), axis=-1)
rms_theta_band[:, j] = np.nanmean(
10 * np.log10(pow[:, np.logical_and(f >= THETA_BAND[0], f <= THETA_BAND[1])]), axis=-1)
lfp_power = np.nanmedian(rms_lf_band - 20 * np.log10(f[1]), axis=-1) * 2
lfp_theta = np.nanmedian(rms_theta_band - 20 * np.log10(f[1]), axis=-1) * 2
df_lfp = pd.DataFrame.from_dict({'lfp_power': lfp_power, 'lfp_theta': lfp_theta})
df_lfp.to_parquet(save_file)
def get_metrics(save_path, channel_idx=None, shank=None):
# Load in data for shank
channels = alfio.load_object(save_path, 'channels')
clusters = alfio.load_object(save_path, 'clusters')
spikes = alfio.load_object(save_path, 'spikes')
if shank is not None:
for k in channels.keys():
channels[k] = channels[k][channel_idx]
clusters_shank = np.isin(clusters.channels, channels.rawInd)
for k in clusters.keys():
clusters[k] = clusters[k][clusters_shank]
spikes_shank = np.isin(spikes.clusters, clusters.metrics['cluster_id'])
for k in spikes.keys():
spikes[k] = spikes[k][spikes_shank]
# Compute some metrics
# AP RMS
ap = alfio.load_object(save_path, 'ephysChannels')
ap_rms = np.percentile(ap['apRMS'][1, channels.rawInd], 90) * 1e6
# LFP PSD
lfp = pd.read_parquet(save_path.joinpath('lfp_metrics.pqt'))
chan_power = lfp['lfp_power'][channels.rawInd].values
lfp_derivative = np.median(np.abs(np.gradient(chan_power)))
# NEURON YIELD
neuron_yield = (clusters.metrics.label == 1).sum() / len(channels.localCoordinates)
ap_qc = 'PASS' if ap_rms < MAX_AP_RMS else 'FAIL'
lfp_qc = 'PASS' if lfp_derivative < MAX_LFP_DERIVATIVE else 'FAIL'
yield_qc = 'PASS' if neuron_yield > MIN_NEURONS_PER_CHANNEL else 'FAIL'
if shank is not None:
print(f'\n\nMetrics for shank {shank}')
print(f'AP rms: {ap_rms}, QC: {ap_qc}')
print(f'LFP power: {lfp_derivative}, QC: {lfp_qc}')
print(f'Neuron yield: {neuron_yield}, QC: {yield_qc}')
# Make a plot with some details
fig = plt.figure(figsize=(15, 10))
gs = gridspec.GridSpec(1, 1, figure=fig, wspace=0.3, hspace=0.3)
gs0 = gridspec.GridSpecFromSubplotSpec(2, 4, subplot_spec=gs[0], width_ratios=[1, 8, 1, 1],
height_ratios=[1, 10], wspace=0.1, hspace=0.3)
gs0_ax1 = fig.add_subplot(gs0[0, 0])
gs0_ax2 = fig.add_subplot(gs0[1, 0])
gs0_ax3 = fig.add_subplot(gs0[0, 1])
gs0_ax4 = fig.add_subplot(gs0[1, 1])
gs0_ax5 = fig.add_subplot(gs0[0, 2])
gs0_ax6 = fig.add_subplot(gs0[1, 2])
gs0_ax7 = fig.add_subplot(gs0[0, 3])
gs0_ax8 = fig.add_subplot(gs0[1, 3])
min_chn = np.min(channels.localCoordinates[:, 1])
max_chn = np.max(channels.localCoordinates[:, 1])
# CLUSTER DEPTH VS AMP PLOT
kp_idx = ~np.isnan(spikes.depths)
_, cluster_depth, _ = compute_cluster_average(spikes.clusters[kp_idx], spikes.depths[kp_idx])
_, cluster_amp, _ = compute_cluster_average(spikes.clusters[kp_idx], spikes.amps[kp_idx])
good_idx = np.where(clusters.metrics.label[np.isin(clusters.metrics.cluster_id,
np.unique(spikes.clusters[kp_idx]))] == 1)
mua = gs0_ax2.scatter(cluster_amp * 1e6, cluster_depth, c='r')
good = gs0_ax2.scatter(cluster_amp[good_idx] * 1e6, cluster_depth[good_idx], c='g')
gs0_ax1.legend(handles=[mua, good], labels=['mua', 'good'], frameon=False, bbox_to_anchor=(0.8, 0.2))
gs0_ax1.axis('off')
gs0_ax2.set_xlabel('Amplitude (uV)')
gs0_ax2.set_ylabel('Depth along probe')
gs0_ax2.set_ylim(min_chn, max_chn)
# SESSION RASTER PLOT
t_bin = 0.1
d_bin = 10
kp_idx = ~np.isnan(spikes.depths)
session_raster, t_vals, d_vals = bincount2D(spikes.times[kp_idx], spikes.depths[kp_idx],
t_bin, d_bin, ylim=[min_chn, max_chn])
session_raster = session_raster / t_bin
gs0_ax4.imshow(session_raster, extent=np.r_[np.min(t_vals), np.max(t_vals), min_chn, max_chn], aspect='auto',
origin='lower', vmax=50, cmap='binary')
gs0_ax3.axis('off')
gs0_ax4.set_yticks([])
gs0_ax4.set_xlabel('Time in session')
# LFP PLOT
clim = np.nanquantile(chan_power, [0.1, 0.9])
lf_im = gs0_ax6.imshow(chan_power[:, np.newaxis], extent=np.r_[0, 10, min_chn, max_chn], origin='lower', cmap='viridis', aspect='auto',
vmin=clim[0], vmax=clim[1])
cbar = fig.colorbar(lf_im, orientation="horizontal", ax=gs0_ax5)
cbar.set_label('LFP (dB)')
ticks = cbar.get_ticks()
cbar.set_ticks([ticks[0], ticks[-1]])
gs0_ax5.axis('off')
gs0_ax6.set_yticks([])
gs0_ax6.set_xticks([])
# AP RMS PLOT
rms_vals = ap['apRMS'][1, :][:, np.newaxis] * 1e6
clim = np.nanquantile(rms_vals, [0.1, 0.9])
rms_im = gs0_ax8.imshow(rms_vals, extent=np.r_[0, 10, min_chn, max_chn], origin='lower', cmap='plasma', aspect='auto',
vmin=clim[0], vmax=clim[1])
gs0_ax8.set_yticks([])
gs0_ax8.set_xticks([])
cbar = fig.colorbar(rms_im, orientation="horizontal", ax=gs0_ax7)
cbar.set_label('AP rms (uV)')
ticks = cbar.get_ticks()
cbar.set_ticks([ticks[0], ticks[-1]])
gs0_ax7.axis('off')
# SAVE PLOT
plot_path = (save_path.joinpath(f'RIGOR_plot_shank_{shank}.png') if shank is not None
else save_path.joinpath('RIGOR_plot.png'))
print(f'Saving overview plot as {str(plot_path)}')
fig.savefig(plot_path)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Offline vs online mode')
parser.add_argument('-r', '--raw_data_path', required=True, help='Path to raw data folder')
parser.add_argument('-s', '--spikesorting_path', required=True, help='Path to spike-sorting folder')
parser.add_argument('-o', '--out_path', default=None, required=False, help='Path to save results')
args = parser.parse_args()
RIGOR_metrics(args.spikesorting_path, args.raw_data_path, save_path=args.out_path)