forked from feizc/FluxMusic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
172 lines (140 loc) · 5.23 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import json
def test_reconstuct():
import yaml
from diffusers import AutoencoderKL
from transformers import SpeechT5HifiGan
from audioldm2.utilities.data.dataset import AudioDataset
from utils import load_clip, load_clap, load_t5
model_path = '/maindata/data/shared/multimodal/public/dataset_music/audioldm2'
config = yaml.load(
open(
'config/16k_64.yaml',
'r'
),
Loader=yaml.FullLoader,
)
print(config)
t5 = load_t5('cuda', max_length=256)
clap = load_clap('cuda', max_length=256)
dataset = AudioDataset(
config=config, split="train", waveform_only=False, dataset_json_path='mini_dataset.json',
tokenizer=clap.tokenizer,
uncond_pro=0.1,
text_ctx_len=77,
tokenizer_t5=t5.tokenizer,
text_ctx_len_t5=256,
uncond_pro_t5=0.1,
)
print(dataset[0]['log_mel_spec'].unsqueeze(0).unsqueeze(0).size())
vae = AutoencoderKL.from_pretrained(os.path.join(model_path, 'vae'))
vocoder = SpeechT5HifiGan.from_pretrained(os.path.join(model_path, 'vocoder'))
latents = vae.encode(dataset[0]['log_mel_spec'].unsqueeze(0).unsqueeze(0)).latent_dist.sample().mul_(vae.config.scaling_factor)
print('laten size:', latents.size())
latents = 1 / vae.config.scaling_factor * latents
mel_spectrogram = vae.decode(latents).sample
print(mel_spectrogram.size())
if mel_spectrogram.dim() == 4:
mel_spectrogram = mel_spectrogram.squeeze(1)
waveform = vocoder(mel_spectrogram)
waveform = waveform[0].cpu().float().detach().numpy()
print(waveform.shape)
# import soundfile as sf
# sf.write('reconstruct.wav', waveform, samplerate=16000)
from scipy.io import wavfile
# wavfile.write('reconstruct.wav', 16000, waveform)
def mini_dataset(num=32):
data = []
for i in range(num):
data.append(
{
'wav': 'case.mp3',
'label': 'a beautiful music',
}
)
with open('mini_dataset.json', 'w') as f:
json.dump(data, f, indent=4)
def fma_dataset():
import pandas as pd
annotation_prex = "/maindata/data/shared/public/zhengcong.fei/dataset/dataset_music/annotation"
annotation_list = ['test-00000-of-00001.parquet', 'train-00000-of-00001.parquet', 'valid-00000-of-00001.parquet']
dataset_prex = '/maindata/data/shared/public/zhengcong.fei/dataset/dataset_music/fma_large'
data = []
for annotation_file in annotation_list:
annotation_file = os.path.join(annotation_prex, annotation_file)
df=pd.read_parquet(annotation_file)
print(df.shape)
for id, row in df.iterrows():
#print(id, row['pseudo_caption'], row['path'])
tmp_path = os.path.join(dataset_prex, row['path'] + '.mp3')
# print(tmp_path)
if os.path.exists(tmp_path):
data.append(
{
'wav': tmp_path,
'label': row['pseudo_caption'],
}
)
# break
print(len(data))
with open('fma_dataset.json', 'w') as f:
json.dump(data, f, indent=4)
def audioset_dataset():
import pandas as pd
dataset_prex = '/maindata/data/shared/public/zhengcong.fei/dataset/dataset_music/audioset'
annotation_path = '/maindata/data/shared/public/zhengcong.fei/dataset/dataset_music/audioset/balanced_train-00000-of-00001.parquet'
df=pd.read_parquet(annotation_path)
print(df.shape)
data = []
for id, row in df.iterrows():
#print(id, row['pseudo_caption'], row['path'])
try:
tmp_path = os.path.join(dataset_prex, row['path'] + '.flac')
except:
print(row['path'])
if os.path.exists(tmp_path):
# print(tmp_path)
data.append(
{
'wav': tmp_path,
'label': row['pseudo_caption'],
}
)
print(len(data))
with open('audioset_dataset.json', 'w') as f:
json.dump(data, f, indent=4)
def combine_dataset():
data_list = ['fma_dataset.json', 'audioset_dataset.json']
data = []
for data_file in data_list:
with open(data_file, 'r') as f:
data += json.load(f)
print(len(data))
with open('combine_dataset.json', 'w') as f:
json.dump(data, f, indent=4)
def test_music_format():
import torchaudio
filename = '2.flac'
waveform, sr = torchaudio.load(filename,)
print(waveform, sr )
def test_flops():
version = 'giant'
import torch
from constants import build_model
from thop import profile
model = build_model(version).cuda()
img_ids = torch.randn((1, 1024, 3)).cuda()
txt = torch.randn((1, 256, 4096)).cuda()
txt_ids = torch.randn((1, 256, 3)).cuda()
y = torch.randn((1, 768)).cuda()
x = torch.randn((1, 1024, 32)).cuda()
t = torch.tensor([1] * 1).cuda()
flops, _ = profile(model, inputs=(x, img_ids, txt, txt_ids, t, y,))
print('FLOPs = ' + str(flops * 2/1000**3) + 'G')
# test_music_format()
# test_reconstuct()
# mini_dataset()
# fma_dataset()
# audioset_dataset()
# combine_dataset()
test_flops()