-
Notifications
You must be signed in to change notification settings - Fork 170
/
Copy pathfsdp_train.py
488 lines (417 loc) · 15.6 KB
/
fsdp_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# Copyright 2023 The DLRover Authors. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The start command on a local node:
dlrover-run --nproc_per_node=2 fsdp_train.py \
--n_layer 48 --n_head 16 --n_embd 384 --data_dir './result' \
--epochs 50 --save_memory_interval 50 --save_storage_interval 500
"""
import argparse
import contextlib
import functools
import os
import time
import torch
import torch.distributed.checkpoint as dist_ckpt
from model import Block
from torch.distributed.checkpoint.optimizer import (
load_sharded_optimizer_state_dict,
)
from torch.distributed.fsdp import CPUOffload
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import StateDictType
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from train_utils import (
add_train_args,
cleanup,
get_data_loaders,
get_lr,
gpt_init,
log_rank0,
setup,
)
from dlrover.trainer.torch.elastic.trainer import ElasticTrainer
from dlrover.trainer.torch.flash_checkpoint.fsdp import (
FsdpFullCheckpointer,
FsdpShardCheckpointer,
StorageType,
)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
def train(args, train_params):
"""
Train the model with the given parameters that has been set up correctly.
Args:
args: Arguments parsed from the command line.
train_params: The parameters set up for training.
- env_params: Parameters relating to the environment.
- model_params: Parameters relating to the model.
- ckpt_params: Parameters relating to the checkpoint.
"""
(env_params, model_params, ckpt_params) = train_params
# Load from checkpoint.
load_checkpoint(model_params, ckpt_params)
# Unpack the parameters for model training.
model = model_params["model"]
context = model_params["context"]
scaler = model_params["scaler"]
device = model_params["device"]
grad_accum_steps = model_params["grad_accum_steps"]
total_steps = model_params["total_steps"] # The only mutable variable.
train_loader = model_params["train_loader"]
elastic_trainer = model_params["elastic_trainer"]
optimizer = model_params["optimizer"]
previous_mfu = -1.0
total_time = 0.0
run_time = 0.0
def grad_accum_logger(step_with_grad_accum):
"""
An inner function working as a decorator to log the training process.
"""
@functools.wraps(step_with_grad_accum)
def wrapper(idx, data, target):
nonlocal previous_mfu, run_time, total_time
start_time = time.time()
print_log, loss = step_with_grad_accum(idx, data, target)
run_time += time.time() - start_time
total_time += run_time
if print_log:
# Estimate the model flops utilization (MFU).
mfu = model.module.estimate_mfu(
args.batch_size * grad_accum_steps, run_time
)
if idx > 5:
if previous_mfu == -1.0:
previous_mfu = mfu
else:
previous_mfu = 0.9 * previous_mfu + 0.1 * mfu
# Estimate the CUDA memory usage.
cuda_mem = torch.cuda.memory_allocated() / 1e9
# Print log.
print(
f"iter {total_steps}: loss {loss:.4f}, "
f"time {run_time * 1000:.2f}ms, "
f"mfu {previous_mfu * 100:.2f}%, "
f"cuda memory {cuda_mem:.3f}G, "
f"lr {learning_rate:.2e}, "
f"total time {total_time:.2f}s"
)
run_time = 0
return print_log, loss
return wrapper
@grad_accum_logger
def step_grad_accum(idx, data, target):
"""
An inner function to perform training with gradient accumulation.
"""
print_log = False
data, target = data.to(device), target.to(device)
# Update total_steps.
nonlocal total_steps
total_steps += 1
model_params["total_steps"] = total_steps
with elastic_trainer.step():
# Forward pass.
with context:
_, loss = model(data, target)
# Scale the loss for gradient accumulation.
loss = loss / grad_accum_steps
# Backward pass, with gradient scaling.
scaler.scale(loss).backward()
# Clip gradients.
if args.grad_clip != 0.0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.grad_clip
)
# Weight update
if (idx + 1) % grad_accum_steps == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
print_log = True
return print_log, loss.item() * grad_accum_steps
# Training loop.
for epoch in range(args.epochs):
# Set epoch into the sampler.
train_loader.sampler.set_epoch(epoch)
# Set learning rate.
learning_rate = (
get_lr(total_steps, args) if args.decay_lr else args.learning_rate
)
optimizer.param_groups[0]["lr"] = learning_rate
# Training loop.
for idx, (data, target) in enumerate(train_loader):
# Step with gradient accumulation.
step_grad_accum(idx, data, target)
# Save the checkpoint. Update the total steps.
save_checkpoint(model_params, ckpt_params)
# Termination conditions
if total_steps > args.max_iters:
return
def setup_train_params(args) -> tuple:
"""
Set up all the necessary parameters before training.
Returns:
tuple: A tuple containing three dictionaries:
- env_params: Parameters relating to the environment.
- model_params: Parameters relating to the model.
- ckpt_params: Parameters relating to the checkpoint.
"""
setup()
world_size = int(os.getenv("WORLD_SIZE", 1))
local_rank = int(os.getenv("LOCAL_RANK", 0))
dtypes = {
"float32": torch.float32,
"bfloat16": torch.bfloat16,
"float16": torch.float16,
}
dtype_name = "float16"
if torch.cuda.is_available():
device = f"cuda:{local_rank}"
torch.cuda.set_device(device)
if torch.cuda.is_bf16_supported():
dtype_name = "bfloat16"
context = torch.amp.autocast("cuda", dtypes[dtype_name])
else:
device = "cpu"
context = contextlib.nullcontext()
scaler = torch.cuda.amp.GradScaler(
enabled=(dtype_name == ("float16" or "bfloat16"))
)
# Set up the gradient accumulation steps.
grad_accum_steps = args.gradient_accumulation_steps
if (grad_accum_steps == 0) or (grad_accum_steps // world_size == 0):
grad_accum_steps = 1
else:
grad_accum_steps = grad_accum_steps // world_size
tokens_per_iter = (
grad_accum_steps * world_size * args.batch_size * args.block_size
)
log_rank0(f"Tokens per iteration will be: {tokens_per_iter:,}")
train_loader, _, vocab_size = get_data_loaders(
data_dir=args.data_dir,
batch_size=args.batch_size,
block_size=args.block_size,
)
model = gpt_init(vocab_size, args=args)
model = model.to(device)
# Set up the model.
if "cuda" in device:
print(f"Running basic FSDP example on local rank {local_rank}.")
my_auto_wrap_policy = functools.partial(
transformer_auto_wrap_policy,
transformer_layer_cls={Block},
)
cpu_offload = (
CPUOffload(offload_params=True) if args.cpu_offload else None
)
model = FSDP(
model,
device_id=local_rank,
auto_wrap_policy=my_auto_wrap_policy,
cpu_offload=cpu_offload,
)
else:
raise ValueError("FSDP can only runs on CUDA.")
# Set up the optimizer.
log_rank0(f"Creating optimizer... {model.parameters()}")
optimizer = torch.optim.AdamW(
params=model.parameters(),
weight_decay=args.weight_decay,
lr=args.learning_rate,
betas=(args.beta1, args.beta2),
)
# Compile the model.
if compile == "True":
log_rank0("Compiling the model... (takes a ~minute).")
model = torch.compile(model) # requires PyTorch 2.0
# Set up the ElasticTrainer.
elastic_trainer = ElasticTrainer(
model=model,
dataloader=train_loader,
)
optimizer = elastic_trainer.prepare(optimizer)
# Prepare the parameters for training.
env_params = {
"world_size": world_size,
"local_rank": local_rank,
}
model_params = {
"model": model,
"context": context,
"scaler": scaler,
"device": device,
"grad_accum_steps": grad_accum_steps,
"total_steps": 0,
"train_loader": train_loader,
"elastic_trainer": elastic_trainer,
"optimizer": optimizer,
}
ckpt_params = {
"use_native": args.use_native_ckpt,
"flash_full_ckpt": args.flash_full_ckpt,
"checkpoint_dir": args.save_dir,
"checkpointer": None,
"save_memory_interval": args.save_memory_interval,
"save_storage_interval": args.save_storage_interval,
}
# Return as a tuple of dictionaries.
return (env_params, model_params, ckpt_params)
def timing_logger(func):
"""
Decorator to time and log the function execution.
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
total_time = time.time() - start_time
if func == load_checkpoint:
# Print the load checkpoint time.
with result as loaded:
print(
f"Load checkpoint time : {total_time}s"
) if loaded else None
elif func == save_checkpoint:
# Print the save checkpoint time.
with result as saved:
print(
f"Save checkpoint time: {total_time}s"
) if saved else None
return result
return wrapper
@timing_logger
def load_checkpoint(model_params, ckpt_params):
"""
Load the checkpoint to memory or disk when needed.
Returns: A boolean value indicating whether the checkpoint was loaded.
This result is mainly used by the "timer" decorator.
"""
loaded = False
model = model_params["model"]
optimizer = model_params["optimizer"]
checkpoint_dir = ckpt_params["checkpoint_dir"]
os.makedirs(checkpoint_dir, exist_ok=True)
if ckpt_params["use_native"]:
# If using native checkpointing.
path = os.path.join(checkpoint_dir, str(model_params["total_steps"]))
if os.path.exists(path):
# Load model state dict.
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
state_dict = {
"model": model.state_dict(),
"step": 0,
# Cannot load the optimizer state_dict
# together with the model state_dict.
}
storage_reader = dist_ckpt.FileSystemReader(path)
dist_ckpt.load_state_dict(
state_dict=state_dict,
storage_reader=storage_reader,
)
model.load_state_dict(state_dict["model"])
# Load optimizer state dict.
optim_state = load_sharded_optimizer_state_dict(
model_state_dict=state_dict["model"],
optimizer_key="optim",
storage_reader=storage_reader,
)
flattened_osd = FSDP.optim_state_dict_to_load(
model, optimizer, optim_state["optim"]
)
optimizer.load_state_dict(flattened_osd)
# Update model params.
model_params["model"] = model
model_params["optimizer"] = optimizer
model_params["total_steps"] = state_dict["step"]
loaded = True
else:
# If using flash checkpointing.
if ckpt_params["flash_full_ckpt"]:
checkpointer = FsdpFullCheckpointer(checkpoint_dir)
else:
checkpointer = FsdpShardCheckpointer(checkpoint_dir)
extra_sd = checkpointer.load_checkpoint(model, optimizer)
# Update model params.
model_params["total_steps"] = extra_sd.get("step", 0)
ckpt_params["checkpointer"] = checkpointer
loaded = True
return loaded
@timing_logger
def save_checkpoint(model_params, ckpt_params):
"""
Save the checkpoint to memory or disk when needed.
Returns: A boolean value indicating whether the checkpoint was saved.
This result is mainly used by the "timer" decorator.
"""
saved = False
model = model_params["model"]
steps = model_params["total_steps"]
optimizer = model_params["optimizer"]
checkpointer = ckpt_params["checkpointer"]
checkpoint_dir = ckpt_params["checkpoint_dir"]
# Save the checkpoint.
if ckpt_params["use_native"]:
# If using native checkpointing.
if steps % ckpt_params["save_storage_interval"] == 0:
# Get state dict.
with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
state_dict = {
"model": model.state_dict(),
"optim": FSDP.optim_state_dict(model, optimizer),
"step": steps,
}
# Save state dict.
path = os.path.join(checkpoint_dir, str(steps))
dist_ckpt.save_state_dict(
state_dict=state_dict,
storage_writer=dist_ckpt.FileSystemWriter(path=path),
)
saved = True
else:
# If using flash checkpointing.
# Warning: When n_procs_per_node is not greater than 1,
# the checkpoint saving would be stuck.
extra_sd = {"step": steps}
if steps % ckpt_params["save_memory_interval"] == 0:
checkpointer.save_checkpoint(
steps,
model,
optimizer,
extra_sd,
storage_type=StorageType.MEMORY,
)
saved = True
if steps % ckpt_params["save_storage_interval"] == 0:
checkpointer.save_checkpoint(
steps,
model,
optimizer,
extra_sd,
storage_type=StorageType.DISK,
)
saved = True
return saved
def arg_parser():
parser = argparse.ArgumentParser(description="Process training parameters")
add_train_args(parser)
parser.add_argument("--cpu_offload", action="store_true", required=False)
parser.add_argument(
"--flash_full_ckpt", action="store_true", required=False
)
return parser.parse_args()
if __name__ == "__main__":
args = arg_parser()
train_params = setup_train_params(args)
train(args, train_params)
cleanup()