-
Notifications
You must be signed in to change notification settings - Fork 443
/
Copy pathHumanoidAMP.yaml
135 lines (124 loc) · 4.77 KB
/
HumanoidAMP.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# used to create the object
name: HumanoidAMP
physics_engine: ${..physics_engine}
# if given, will override the device setting in gym.
env:
numEnvs: ${resolve_default:4096,${...num_envs}}
envSpacing: 5
episodeLength: 300
cameraFollow: True # if the camera follows humanoid or not
enableDebugVis: False
pdControl: True
powerScale: 1.0
controlFrequencyInv: 2 # 30 Hz
stateInit: "Random"
hybridInitProb: 0.5
numAMPObsSteps: 2
localRootObs: False
contactBodies: ["right_foot", "left_foot"]
terminationHeight: 0.5
enableEarlyTermination: True
# animation files to learn from
# these motions should use hyperparameters from HumanoidAMPPPO.yaml
#motion_file: "amp_humanoid_walk.npy"
motion_file: "amp_humanoid_run.npy"
#motion_file: "amp_humanoid_dance.npy"
# these motions should use hyperparameters from HumanoidAMPPPOLowGP.yaml
#motion_file: "amp_humanoid_hop.npy"
#motion_file: "amp_humanoid_backflip.npy"
asset:
assetFileName: "mjcf/amp_humanoid.xml"
plane:
staticFriction: 1.0
dynamicFriction: 1.0
restitution: 0.0
sim:
dt: 0.0166 # 1/60 s
substeps: 2
up_axis: "z"
use_gpu_pipeline: ${eq:${...pipeline},"gpu"}
gravity: [0.0, 0.0, -9.81]
physx:
num_threads: ${....num_threads}
solver_type: ${....solver_type}
use_gpu: ${contains:"cuda",${....sim_device}} # set to False to run on CPU
num_position_iterations: 4
num_velocity_iterations: 0
contact_offset: 0.02
rest_offset: 0.0
bounce_threshold_velocity: 0.2
max_depenetration_velocity: 10.0
default_buffer_size_multiplier: 5.0
max_gpu_contact_pairs: 8388608 # 8*1024*1024
num_subscenes: ${....num_subscenes}
contact_collection: 2 # 0: CC_NEVER (don't collect contact info), 1: CC_LAST_SUBSTEP (collect only contacts on last substep), 2: CC_ALL_SUBSTEPS (broken - do not use!)
task:
randomize: False
randomization_params:
# specify which attributes to randomize for each actor type and property
frequency: 600 # Define how many environment steps between generating new randomizations
observations:
range: [0, .002] # range for the white noise
operation: "additive"
distribution: "gaussian"
actions:
range: [0., .02]
operation: "additive"
distribution: "gaussian"
sim_params:
gravity:
range: [0, 0.4]
operation: "additive"
distribution: "gaussian"
schedule: "linear" # "linear" will linearly interpolate between no rand and max rand
schedule_steps: 3000
actor_params:
humanoid:
color: True
rigid_body_properties:
mass:
range: [0.5, 1.5]
operation: "scaling"
distribution: "uniform"
setup_only: True # Property will only be randomized once before simulation is started. See Domain Randomization Documentation for more info.
schedule: "linear" # "linear" will linearly interpolate between no rand and max rand
schedule_steps: 3000
rigid_shape_properties:
friction:
num_buckets: 500
range: [0.7, 1.3]
operation: "scaling"
distribution: "uniform"
schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps`
schedule_steps: 3000
restitution:
range: [0., 0.7]
operation: "scaling"
distribution: "uniform"
schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps`
schedule_steps: 3000
dof_properties:
damping:
range: [0.5, 1.5]
operation: "scaling"
distribution: "uniform"
schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps`
schedule_steps: 3000
stiffness:
range: [0.5, 1.5]
operation: "scaling"
distribution: "uniform"
schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps`
schedule_steps: 3000
lower:
range: [0, 0.01]
operation: "additive"
distribution: "gaussian"
schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps`
schedule_steps: 3000
upper:
range: [0, 0.01]
operation: "additive"
distribution: "gaussian"
schedule: "linear" # "linear" will scale the current random sample by `min(current num steps, schedule_steps) / schedule_steps`
schedule_steps: 3000