-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
132 lines (97 loc) · 3.83 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
from torch import nn
import torch.nn.functional as F
class ConvBlock(nn.Module):
def __init__(self, input_ch=3, output_ch=64, activf=nn.ReLU, bias=True):
super().__init__()
self.conv1 = nn.Conv2d(input_ch, output_ch, 3, 1, 1, bias=bias)
self.conv2 = nn.Conv2d(output_ch, output_ch, 3, 1, 1, bias=bias)
self.activf = activf
self.conv_block = nn.Sequential(
self.conv1,
self.activf(inplace=True),
self.conv2,
self.activf(inplace=True)
)
def forward(self, x):
return self.conv_block(x)
class UpConv(nn.Module):
def __init__(self, input_ch=64, output_ch=32, bias=True):
super().__init__()
self.conv = nn.ConvTranspose2d(input_ch, output_ch, 2, 2, bias=bias)
self.conv_block = nn.Sequential(self.conv)
def forward(self, x):
return self.conv_block(x)
class UNetModule(nn.Module):
def __init__(self, input_ch, output_ch, base_ch):
super().__init__()
self.conv1 = ConvBlock(input_ch, base_ch)
self.conv2 = ConvBlock(base_ch, 2* base_ch)
self.conv3 = ConvBlock(2 * base_ch, 4 * base_ch)
self.conv4 = ConvBlock(4 * base_ch, 8 * base_ch)
self.conv5 = ConvBlock(8 * base_ch, 16 * base_ch)
self.upconv1 = UpConv(16 * base_ch, 8 * base_ch)
self.conv6 = ConvBlock(16 * base_ch, 8 * base_ch)
self.upconv2 = UpConv(8 * base_ch, 4 * base_ch)
self.conv7 = ConvBlock(8 * base_ch, 4 * base_ch)
self.upconv3 = UpConv(4 * base_ch, 2 * base_ch)
self.conv8 = ConvBlock(4 * base_ch, 2 * base_ch)
self.upconv4 = UpConv(2 * base_ch, base_ch)
self.conv9 = ConvBlock(2 * base_ch, base_ch)
self.outconv = nn.Conv2d(base_ch, output_ch, 1, bias=True)
def forward(self, x):
x1 = self.conv1(x)
x = F.max_pool2d(x1, 2, 2)
x2 = self.conv2(x)
x = F.max_pool2d(x2, 2, 2)
x3 = self.conv3(x)
x = F.max_pool2d(x3, 2, 2)
x4 = self.conv4(x)
x = F.max_pool2d(x4, 2, 2)
x = self.conv5(x)
x = self.upconv1(x)
x = torch.cat((x4, x), dim=1)
x = self.conv6(x)
x = self.upconv2(x)
x = torch.cat((x3, x), dim=1)
x = self.conv7(x)
x = self.upconv3(x)
x = torch.cat((x2, x), dim=1)
x = self.conv8(x)
x = self.upconv4(x)
x = torch.cat((x1, x), dim=1)
x = self.conv9(x)
x = self.outconv(x)
return x
class RRWNet(nn.Module):
def __init__(self, input_ch=3, output_ch=3, base_ch=64, iterations=5):
super().__init__()
self.first_u = UNetModule(input_ch, output_ch, base_ch)
self.second_u = UNetModule(output_ch, 2, base_ch)
self.iterations = iterations
def forward(self, x):
predictions = []
pred_1 = self.first_u(x)
predictions.append(pred_1)
bv_logits = pred_1[:, 2:3, :, :]
pred_1 = torch.sigmoid(pred_1)
bv = pred_1[:, 2:3, :, :]
pred_2 = self.second_u(pred_1)
predictions.append(torch.cat((pred_2, bv_logits), dim=1))
for _ in range(self.iterations):
pred_2 = torch.sigmoid(pred_2)
pred_2 = torch.cat((pred_2, bv), dim=1)
pred_2 = self.second_u(pred_2)
predictions.append(torch.cat((pred_2, bv_logits), dim=1))
return predictions
def refine(self, x):
predictions = []
bv = x[:, 2:3, :, :]
pred_2 = self.second_u(x)
predictions.append(torch.cat((torch.sigmoid(pred_2), bv), dim=1))
for _ in range(self.iterations):
pred_2 = torch.sigmoid(pred_2)
pred_2 = torch.cat((pred_2, bv), dim=1)
pred_2 = self.second_u(pred_2)
predictions.append(torch.cat((torch.sigmoid(pred_2), bv), dim=1))
return predictions