-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
60 lines (48 loc) · 1.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from typing import List, Tuple
import numpy as np
import torch
def get_unet_padding_np(np_image: np.ndarray, n_down=5) -> tuple:
""" Calculates the necessary padding of an image to be processed by
UNet.
Args:
np_image: image in NumPy format.
n_down: number of downsampling blocks.
Returns:
Image padding (NumPy format).
"""
n = 2**n_down
shape = np_image.shape
h_pad = n - shape[0] % n
w_pad = n - shape[1] % n
h_half_pad = int(h_pad/2)
w_half_pad = int(w_pad/2)
if len(shape) == 3:
padding = (h_half_pad, h_pad-h_half_pad), (w_half_pad, w_pad-w_half_pad), (0, 0)
else:
padding = (h_half_pad, h_pad-h_half_pad), (w_half_pad, w_pad-w_half_pad)
return padding
def pad_images_unet(np_images: List[np.ndarray]) -> Tuple[List, List]:
""" Applies UNet padding to a list of images in NumPy format.
Args:
np_images: list of NumPy images.
Returns:
Padded images.
"""
padded_images = []
paddings = []
for np_image in np_images:
padding = get_unet_padding_np(np_image)
paddings.append(padding)
padded_images.append(np.pad(np_image, padding))
return padded_images, paddings
def to_torch_tensors(npimages):
# swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
tensors = []
for img in npimages:
if len(img.shape) == 2:
tensors.append(torch.from_numpy(img[np.newaxis, ...].astype('float32')))
else:
tensors.append(torch.from_numpy(img.transpose(2, 0, 1).astype('float32')))
return tensors