-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
88 lines (61 loc) · 2.56 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from flask import Flask, request, jsonify
import json
import os
import hashlib
from concurrent.futures import ThreadPoolExecutor
from google.cloud import dialogflow_v2 as dialogflow
from google.oauth2 import service_account
from transformers import AutoTokenizer, AutoModelForCausalLM
# import torch
executor = ThreadPoolExecutor(max_workers=1)
model = AutoModelForCausalLM.from_pretrained(
"bigscience/bloom-560m", use_cache=True)
tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
app = Flask(__name__)
project_id = "bloom-560m-oxcs" # Substitua pelo ID do seu projeto no GCP
# Carregue suas credenciais
credentials = service_account.Credentials.from_service_account_file(
"./bloom-560m-oxcs-0d0eb16ef2b6.json")
# Crie um cliente Dialogflow
intents_client = dialogflow.IntentsClient(credentials=credentials)
# Configure a localização do agente e o ID do projeto
agent_path = f"projects/{project_id}/agent"
def generate(prompt):
input_ids = tokenizer(prompt, return_tensors="pt")
sample = model.generate(**input_ids, max_length=256, temperature=0.1)
return tokenizer.decode(sample[0], truncate_before_pattern=[r"\n\n^#", "^”'", "\n\n\n"])
def create_intent(pergunta):
try:
# Configure training phrases and text messages
training_phrase = dialogflow.types.Intent.TrainingPhrase(parts=[
dialogflow.types.Intent.TrainingPhrase.Part(text=pergunta)
])
text = dialogflow.types.Intent.Message.Text(text=[generate(pergunta)])
# Configure the intent
intent = dialogflow.types.Intent(
display_name=hashlib.sha1(pergunta.encode("utf-8")).hexdigest(),
training_phrases=[training_phrase],
messages=[dialogflow.types.Intent.Message(text=text)],
)
# Create the request
create_intent_request = dialogflow.types.CreateIntentRequest(
parent=agent_path,
intent=intent,
)
# Send the request and display the result
response = intents_client.create_intent(request=create_intent_request)
print(f"Intent created: {response.name}")
except Exception as error:
print(f"Error updating intent: {error}")
@app.route("/", methods=["POST"])
def webhook():
req_data = request.get_json()
print("Query", req_data["queryResult"]["queryText"])
# print("Query", req_data["queryResult"])
executor.submit(create_intent, req_data["queryResult"]["queryText"])
res = {
"fulfillmentText": "I'm learning yet",
}
return jsonify(res)
if __name__ == "__main__":
app.run()