-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
129 lines (97 loc) · 4.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import numpy as np
import time
import os
import argparse
from segnet import SegNet
from enet import ENet
from loss import DiscriminativeLoss
from dataset import tuSimpleDataset
from logger import Logger
parser = argparse.ArgumentParser(description="Train model")
parser.add_argument('--train-path', required=True)
parser.add_argument('--lr', type=float, default=1e-5, help='learning rate')
parser.add_argument('--batch-size', type=int, default=10, help='batch size')
parser.add_argument('--img-size', type=int, nargs='+', default=[224, 224], help='image resolution: [width height]')
parser.add_argument('--epoch', type=int, default=100)
args = parser.parse_args()
INPUT_CHANNELS = 3
OUTPUT_CHANNELS = 2
LEARNING_RATE = args.lr #1e-5
BATCH_SIZE = args.batch_size #20
NUM_EPOCHS = args.epoch #100
LOG_INTERVAL = 10
SIZE = [args.img_size[0], args.img_size[1]] #[224, 224]
def train():
# refer from : https://github.com/Sayan98/pytorch-segnet/blob/master/src/train.py
is_better = True
prev_loss = float('inf')
model.train()
for epoch in range(NUM_EPOCHS):
t_start = time.time()
loss_f = []
for batch_idx, (imgs, sem_labels, ins_labels) in enumerate(train_dataloader):
loss = 0
img_tensor = torch.autograd.Variable(imgs).cuda()
sem_tensor = torch.autograd.Variable(sem_labels).cuda()
ins_tensor = torch.autograd.Variable(ins_labels).cuda()
# Init gradients
optimizer.zero_grad()
# Predictions
sem_pred, ins_pred = model(img_tensor)
# Discriminative Loss
disc_loss = criterion_disc(ins_pred, ins_tensor, [5] * len(img_tensor))
loss += disc_loss
# CrossEntropy Loss
ce_loss = criterion_ce(sem_pred.permute(0,2,3,1).contiguous().view(-1,OUTPUT_CHANNELS),
sem_tensor.view(-1))
loss += ce_loss
loss.backward()
optimizer.step()
loss_f.append(loss.cpu().data.numpy())
if batch_idx % LOG_INTERVAL == 0:
print('\tTrain Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(imgs), len(train_dataloader.dataset),
100. * batch_idx / len(train_dataloader), loss.item()))
#Tensorboard
info = {'loss': loss.item(), 'ce_loss': ce_loss.item(), 'disc_loss': disc_loss.item(), 'epoch': epoch}
for tag, value in info.items():
logger.scalar_summary(tag, value, batch_idx + 1)
# 2. Log values and gradients of the parameters (histogram summary)
for tag, value in model.named_parameters():
tag = tag.replace('.', '/')
logger.histo_summary(tag, value.data.cpu().numpy(), batch_idx + 1)
# logger.histo_summary(tag + '/grad', value.grad.data.cpu().numpy(), batch_idx + 1)
# 3. Log training images (image summary)
info = {'images': img_tensor.view(-1, 3, SIZE[0], SIZE[1])[:BATCH_SIZE].cpu().numpy(),
'labels': sem_tensor.view(-1, SIZE[0], SIZE[1])[:BATCH_SIZE].cpu().numpy(),
'sem_preds': sem_pred.view(-1, 2, SIZE[0], SIZE[1])[:BATCH_SIZE,1].data.cpu().numpy(),
'ins_preds': ins_pred.view(-1, SIZE[0], SIZE[1])[:BATCH_SIZE*5].data.cpu().numpy()}
for tag, images in info.items():
logger.image_summary(tag, images, batch_idx + 1)
dt = time.time() - t_start
is_better = np.mean(loss_f) < prev_loss
scheduler.step()
if is_better:
prev_loss = np.mean(loss_f)
print("\t\tBest Model.")
torch.save(model.state_dict(), "model_best.pth")
print("Epoch #{}\tLoss: {:.8f}\t Time: {:2f}s, Lr: {:2f}".format(epoch+1, np.mean(loss_f), dt, optimizer.param_groups[0]['lr']))
if __name__ == "__main__":
logger = Logger('./logs')
train_path = args.train_path
train_dataset = tuSimpleDataset(train_path, size=SIZE)
train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=16)
#model = SegNet(input_ch=INPUT_CHANNELS, output_ch=OUTPUT_CHANNELS).cuda()
model = ENet(input_ch=INPUT_CHANNELS, output_ch=OUTPUT_CHANNELS).cuda()
if os.path.isfile("model_best.pth"):
print("Loaded model_best.pth")
model.load_state_dict(torch.load("model_best.pth"))
criterion_ce = torch.nn.CrossEntropyLoss().cuda()
criterion_disc = DiscriminativeLoss(delta_var=0.1,
delta_dist=0.6,
norm=2,
usegpu=True).cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[20,30,40,50,60,70,80], gamma=0.9)
train()