-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathS4.Rmd
1742 lines (1301 loc) · 60.2 KB
/
S4.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "S4"
output:
html_document:
toc: true
toc_float:
smooth_scroll: FALSE
number_sections: true
---
This appendix illustrates the process of fitting various parameterisations
of the $SE^iI^jR$ model ($M^{1j}$ & $M^{3j}$) to **high-fidelity $D^{3j}$**
incidence reports. We mean by *parameterisation* the decision of categorising
parameters as either *unknown* or *assumed*. For the unknown parameters, we
construct prior distributions, which will be eventually updated in light of the
data via HMC sampling, resulting in a posterior distribution. On the other hand,
assumed parameters are fixed at their true values.
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE)
library(cmdstanr)
library(dplyr)
library(Metrics)
library(purrr)
library(readr)
library(readsdr)
library(rstan)
library(stringr)
library(tictoc)
library(tidyr)
source("./R_scripts/Inference.R")
source("./R_scripts/formulas.R")
source("./R_scripts/model_selection.R")
source("./R_scripts/plots.R")
source("./R_scripts/posterior_utils.R")
source("./R_scripts/SEIR_stan_files.R")
source("./R_scripts/synthetic_data.R")
source("./R_scripts/tables.R")
source("./R_scripts/utils.R")
```
```{r}
params_df <- read_csv("./data/param_values.csv", show_col_types = FALSE)
# Latent period
inv_sigma_val <- params_df |> filter(name == "inv_sigma") |> pull(value)
# Infectious period
inv_gamma_val <- params_df |> filter(name == "inv_gamma") |> pull(value)
# Effective contact rate
beta_val <- params_df |> filter(name == "beta") |> pull(value)
# Reporting rate
rho_val <- params_df |> filter(name == "rho") |> pull(value)
R0_val <- beta_val * inv_gamma_val
y_df <- read_csv("./data/Synthetic/SEIR/Case_3.csv")
```
```{r}
n_chains <- 4
samples_per_chain <- 1000
M_j <- 1:4
```
# Three-unknown parameterisation (traditional)
For candidates from this parameterisation, we assume that
two parameters and one initial condition are unknown: $\beta$, $\rho$, and
$I^1_0$. Each candidate is coupled with the Poisson distribution.
## Prior distributions {#link1}
The prior distributions shown below apply for all candidates from this
parameterisation.
### Effective contact rate ($\beta$)
```{r}
fig_cntr <- 1
caption <- str_glue("Fig {fig_cntr}. Histogram from samples obtained from the contact rate's prior distribution")
```
```{r fig.cap = caption, fig.align='left', fig.height = 3, fig.width = 5}
prior_df <- data.frame(x = rlnorm(1e5))
plot_prior(prior_df, "beta", "beta~'~ lognormal(0,1)'", c(0, 10), 25)
```
### Reporting rate ($\rho$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Histogram from samples obtained from the reporting rate's prior distribution")
```
```{r fig.cap = caption, fig.align='left', fig.height = 3, fig.width = 5}
prior_df <- data.frame(x = rbeta(1e5, 2, 2))
plot_prior(prior_df, "rho", "rho~'~ beta(2, 2)'", c(0, 1), 15)
```
### Initial number of infectious individuals ($I_0$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Histogram from samples obtained from the prior distribution of the initial number of infectious individuals.")
```
```{r, fig.cap = caption, fig.align='left', fig.height = 3, fig.width = 5}
prior_df <- data.frame(x = rlnorm(1e5))
plot_prior(prior_df, "I[0]", "I[0]~'~ lognormal(0,1)'", c(0, 10), 25)
```
## Posterior distributions
We stratify inference results by the distribution of the infectious period that
produced the observed incidences. For instance, $D_{31}$ implies that the fitted
incidence stems from an $SE^3I^1R$ with an gamma-distributed (shape = 3) latent
period and an exponential-distributed infectious period.
```{r}
root_fldr <- "./Saved_objects/Inference/Synthetic_data/SEIR/Case_3/Three_params"
all_files <- readRDS("./Stan_files/Inference/Three_params/pois/meta_info.rds")
n_params <- 5
ll_list_right <- vector(mode = "list", length = length(M_j))
ll_list_wrong <- vector(mode = "list", length = length(M_j))
```
### Fitting $D^{31}$
```{r}
D_i <- 3
D_j <- 1
n_data <- 20
```
```{r}
M_i <- 3
fltr <- map_lgl(all_files, \(fl_list) fl_list$E_ord == M_i)
info_files <- all_files[fltr]
create_backup_fldrs(D_i, D_j, n_data, M_i, M_j, root_fldr)
```
```{r}
ll_list_right[[D_j]] <- fit_datasets(D_i, D_j, n_data, y_df, info_files,
root_fldr, n_chains, samples_per_chain,
n_params = n_params)
```
```{r, wrong_E_1}
M_i <- 1
fltr <- map_lgl(all_files, \(fl_list) fl_list$E_ord == M_i)
info_files <- all_files[fltr]
create_backup_fldrs(D_i, D_j, n_data, M_i, M_j, root_fldr)
```
```{r}
ll_list_wrong[[D_j]] <- fit_datasets(D_i, D_j, n_data, y_df, info_files,
root_fldr, n_chains, samples_per_chain,
n_params = n_params)
```
```{r}
ds <- 4
posterior_sample <- bind_rows(ll_list_right[[D_j]][[ds]],
ll_list_wrong[[D_j]][[ds]])
ds_subset <- c(4, 8, 12, 16)
posterior_subset <- lapply(ds_subset, \(ds) {
bind_rows(ll_list_right[[D_j]][[ds]],
ll_list_wrong[[D_j]][[ds]])
})
```
#### Incidence fit
The figure below compares actual (points) and simulated (lines) latent incidence
by model candidate.
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior predictive checks against latent incidence. Dots denote synthetic data while lines indicate simulations from candidates' ODE structure. We configure these structures using samples from the posterior distribution.")
```
```{r, fig.cap = caption}
set.seed(1509)
incidence_df <- extract_incidence(posterior_sample, 40)
plot_incidence_prediction(incidence_df, y_df, D_i, D_j, ds)
```
We draw on the mean absolute scaled error (MASE) to compare incidence fits. This
quantity is a measure of the accuracy of forecasts, well-suited for time-series.
Therefore, we employ the MASE to compare each of the 4000 simulated latent
incidences against its true counterpart ($x$) and observed incidence ($y$). By
simulated latent incidences, we refer to the process of plugging the samples of
a posterior distribution into an ODE model to obtain incidence trajectories via
simulation. We summarise the results via histograms in the plot below. The left
column (of panels) contains the comparison between simulated and actual latent
incidences. The right column of panels displays the comparison between simulated
latent incidence and the observed incidence. Overall, there is no noticeable
difference in the histograms as the distribution of the infectious period in the
fitting model varies (increasing $j$). In stark contrast, assuming the wrong
distribution of the latent period leads to suboptimal incidence fits. Notice
that assuming a gamma-distributed latent period with shape 3 ($i = 3$) produces
better fits (lower MASE) than a model with the same distribution of the
infectious period, but with an exponentially-distributed latent period ($i = 1$).
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Fit scores by candidate model and type of data. $x$ denotes latent incidence, whereas $y$ indicates observed incidence. Vertical line denotes the mean.")
```
```{r, fig.cap = caption}
plot_hist_mase2(posterior_sample, y_df, c(0, 0.75))
```
#### Joint posterior distribution (right latent period)
In this plot, we show an example of a joint posterior distribution.
Specifically, this posterior distribution was derived from fitting the $M^{31}$
candidate to one $D^{31}$ incidence report.
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior distribution. The diagonal shows the posterior marginal distributions (histograms). In the lower triangular part, the joint posterior distribution of each possible\ncombination of two parameters is displayed (heatmaps). The upper triangular part shows the correlation among parameters.")
```
```{r, fig.cap = caption}
joint_posterior_df <- posterior_sample |> filter(M_i == !!D_i,
M_j == !!D_j) |>
select(par_beta, par_rho, I0)
pairs_posterior(joint_posterior_df, strip_text = 10, axis_text_size = 7,
M_j = D_j)
```
#### Joint posterior distribution (wrong latent period)
This posterior distribution was obtained from fitting the $M^{11}$ candidate to
one $D^{31}$ incidence report.
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior distribution. The diagonal shows the posterior marginal distributions (histograms). In the lower triangular part, the joint posterior distribution of each possible\ncombination of two parameters is displayed (heatmaps). The upper triangular part shows the correlation among parameters.")
```
```{r, fig.cap = caption}
joint_posterior_df <- posterior_sample |> filter(M_i != !!D_i,
M_j == !!D_j) |>
select(par_beta, par_rho, I0)
pairs_posterior(joint_posterior_df, strip_text = 10, axis_text_size = 7,
M_j = D_j)
```
#### Marginal posterior distributions
In this section, we present a comparison between estimated marginal posterior
distributions (error bars) and actual values (vertical lines). Such
distributions are the result of fitting all eight candidates to four $D^{31}$
incidence reports. The value in the middle of the error bars indicates the
relative error between the actual value and the mean of the marginal posterior
distribution.
##### Basic reproduction number ($\Re_0$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the basic reproduction number by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_R0_comparison_by_dataset(posterior_subset, R0_val, 2.1, 2.6, D_i, D_j)
```
##### Reporting rate ($\rho$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the reporting rate by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_par_estimates_by_dataset(posterior_subset, "par_rho", rho_val,
x_min = 0.5, x_max = 1, x_label = "rho",
D_i, D_j)
```
##### Initial number of infectious individuals ($I_0$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the initial number of infectious individuals by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_par_estimates_by_dataset(posterior_subset, "I0", 1, x_min = 0,
x_max = 1.5, x_label = "I[0]", D_i, D_j)
```
### Fitting $D^{32}$
```{r}
D_i <- 3
D_j <- 2
n_data <- 20
```
```{r}
M_i <- 3
fltr <- map_lgl(all_files, \(fl_list) fl_list$E_ord == M_i)
info_files <- all_files[fltr]
create_backup_fldrs(D_i, D_j, n_data, M_i, M_j, root_fldr)
```
```{r}
ll_list_right[[D_j]] <- fit_datasets(D_i, D_j, n_data, y_df, info_files,
root_fldr, n_chains, samples_per_chain,
n_params = n_params)
```
```{r}
M_i <- 1
fltr <- map_lgl(all_files, \(fl_list) fl_list$E_ord == M_i)
info_files <- all_files[fltr]
create_backup_fldrs(D_i, D_j, n_data, M_i, M_j, root_fldr)
```
```{r}
ll_list_wrong[[D_j]] <- fit_datasets(D_i, D_j, n_data, y_df, info_files,
root_fldr, n_chains, samples_per_chain,
n_params = n_params)
```
```{r}
ds <- 4
posterior_sample <- bind_rows(ll_list_right[[D_j]][[ds]],
ll_list_wrong[[D_j]][[ds]])
ds_subset <- c(4, 8, 12, 16)
posterior_subset <- lapply(ds_subset, \(ds) {
bind_rows(ll_list_right[[D_j]][[ds]],
ll_list_wrong[[D_j]][[ds]])
})
```
#### Incidence fit
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior predictive checks against latent incidence. Dots denote synthetic data while lines indicate simulations from candidates' ODE structure. We configure these structures using samples from the posterior distribution.")
```
```{r, fig.cap = caption}
set.seed(1117)
incidence_df <- extract_incidence(posterior_sample, 40)
plot_incidence_prediction(incidence_df, y_df, D_i, D_j, ds)
```
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Fit scores by candidate model and type of data. $x$ denotes latent incidence, whereas $y$ indicates observed incidence. Vertical line denotes the mean.")
```
```{r, fig.cap = caption}
plot_hist_mase2(posterior_sample, y_df, c(0, 0.75))
```
#### Joint posterior distribution (right latent period)
This posterior distribution was derived from fitting the $M^{32}$
candidate to one $D^{32}$ incidence report.
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior distribution. The diagonal shows the posterior marginal distributions (histograms). In the lower triangular part, the joint posterior distribution of each possible\ncombination of two parameters is displayed (heatmaps). The upper triangular part shows the correlation among parameters.")
```
```{r, fig.cap = caption}
joint_posterior_df <- posterior_sample |> filter(M_i == !!D_i,
M_j == !!D_j) |>
select(par_beta, par_rho, I0)
pairs_posterior(joint_posterior_df, strip_text = 10, axis_text_size = 7,
M_j = D_j)
```
#### Joint posterior distribution (wrong latent period)
This posterior distribution was obtained from fitting the $M^{12}$ candidate to
one $D^{32}$ incidence report.
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior distribution. The diagonal shows the posterior marginal distributions (histograms). In the lower triangular part, the joint posterior distribution of each possible\ncombination of two parameters is displayed (heatmaps). The upper triangular part shows the correlation among parameters.")
```
```{r, fig.cap = caption}
joint_posterior_df <- posterior_sample |> filter(M_i != !!D_i,
M_j == !!D_j) |>
select(par_beta, par_rho, I0)
pairs_posterior(joint_posterior_df, strip_text = 10, axis_text_size = 7,
M_j = D_j)
```
#### Marginal posterior distributions
##### Basic reproduction number ($\Re_0$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the basic reproduction number by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_R0_comparison_by_dataset(posterior_subset, R0_val, 2, 3, D_i, D_j)
```
##### Reporting rate ($\rho$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the reporting rate by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_par_estimates_by_dataset(posterior_subset, "par_rho", rho_val,
x_min = 0.5, x_max = 1, x_label = "rho",
D_i, D_j)
```
##### Initial number of infectious individuals ($I_0$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the initial number of infectious individuals by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_par_estimates_by_dataset(posterior_subset, "I0", 1, x_min = 0,
x_max = 1.5, x_label = "I[0]", D_i, D_j)
```
### Fitting $D^{33}$
```{r}
D_i <- 3
D_j <- 3
n_data <- 20
```
```{r}
M_i <- 3
fltr <- map_lgl(all_files, \(fl_list) fl_list$E_ord == M_i)
info_files <- all_files[fltr]
create_backup_fldrs(D_i, D_j, n_data, M_i, M_j, root_fldr)
```
```{r}
ll_list_right[[D_j]] <- fit_datasets(D_i, D_j, n_data, y_df, info_files,
root_fldr, n_chains, samples_per_chain,
n_params = n_params)
```
```{r}
M_i <- 1
fltr <- map_lgl(all_files, \(fl_list) fl_list$E_ord == M_i)
info_files <- all_files[fltr]
create_backup_fldrs(D_i, D_j, n_data, M_i, M_j, root_fldr)
```
```{r}
ll_list_wrong[[D_j]] <- fit_datasets(D_i, D_j, n_data, y_df, info_files,
root_fldr, n_chains, samples_per_chain,
n_params = n_params)
```
```{r}
ds <- 4
posterior_sample <- bind_rows(ll_list_right[[D_j]][[ds]],
ll_list_wrong[[D_j]][[ds]])
ds_subset <- c(4, 8, 12, 16)
posterior_subset <- lapply(ds_subset, \(ds) {
bind_rows(ll_list_right[[D_j]][[ds]],
ll_list_wrong[[D_j]][[ds]])
})
```
#### Incidence fit
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior predictive checks against latent incidence. Dots denote synthetic data while lines indicate simulations from candidates' ODE structure. We configure these structures using samples from the posterior distribution.")
```
```{r, fig.cap = caption}
set.seed(1129)
incidence_df <- extract_incidence(posterior_sample, 40)
plot_incidence_prediction(incidence_df, y_df, D_i, D_j, ds)
```
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Fit scores by candidate model and type of data. $x$ denotes latent incidence, whereas $y$ indicates observed incidence. Vertical line denotes the mean.")
```
```{r, fig.cap = caption}
plot_hist_mase2(posterior_sample, y_df, c(0, 0.75))
```
#### Joint posterior distribution (right latent period)
This posterior distribution was derived from fitting the $M^{33}$
candidate to one $D^{33}$ incidence report.
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior distribution. The diagonal shows the posterior marginal distributions (histograms). In the lower triangular part, the joint posterior distribution of each possible\ncombination of two parameters is displayed (heatmaps). The upper triangular part shows the correlation among parameters.")
```
```{r, fig.cap = caption}
joint_posterior_df <- posterior_sample |> filter(M_i == !!D_i,
M_j == !!D_j) |>
select(par_beta, par_rho, I0)
pairs_posterior(joint_posterior_df, strip_text = 10, axis_text_size = 7,
M_j = D_j)
```
#### Joint posterior distribution (wrong latent period)
This posterior distribution was obtained from fitting the $M^{13}$ candidate to
one $D^{33}$ incidence report.
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior distribution. The diagonal shows the posterior marginal distributions (histograms). In the lower triangular part, the joint posterior distribution of each possible\ncombination of two parameters is displayed (heatmaps). The upper triangular part shows the correlation among parameters.")
```
```{r, fig.cap = caption}
joint_posterior_df <- posterior_sample |> filter(M_i != !!D_i,
M_j == !!D_j) |>
select(par_beta, par_rho, I0)
pairs_posterior(joint_posterior_df, strip_text = 10, axis_text_size = 7,
M_j = D_j)
```
#### Marginal posterior distributions
##### Basic reproduction number ($\Re_0$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the basic reproduction number by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_R0_comparison_by_dataset(posterior_subset, R0_val, 2, 3, D_i, D_j)
```
##### Reporting rate ($\rho$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the reporting rate by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_par_estimates_by_dataset(posterior_subset, "par_rho", rho_val,
x_min = 0.5, x_max = 1, x_label = "rho",
D_i, D_j)
```
##### Initial number of infectious individuals ($I_0$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the initial number of infectious individuals by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_par_estimates_by_dataset(posterior_subset, "I0", 1, x_min = 0,
x_max = 1.5, x_label = "I[0]", D_i, D_j)
```
### Fitting $D^{34}$
```{r}
D_i <- 3
D_j <- 4
n_data <- 20
```
```{r}
M_i <- 3
fltr <- map_lgl(all_files, \(fl_list) fl_list$E_ord == M_i)
info_files <- all_files[fltr]
create_backup_fldrs(D_i, D_j, n_data, M_i, M_j, root_fldr)
```
```{r}
ll_list_right[[D_j]] <- fit_datasets(D_i, D_j, n_data, y_df, info_files,
root_fldr, n_chains, samples_per_chain,
n_params = n_params)
```
```{r}
M_i <- 1
fltr <- map_lgl(all_files, \(fl_list) fl_list$E_ord == M_i)
info_files <- all_files[fltr]
create_backup_fldrs(D_i, D_j, n_data, M_i, M_j, root_fldr)
```
```{r}
ll_list_wrong[[D_j]] <- fit_datasets(D_i, D_j, n_data, y_df, info_files,
root_fldr, n_chains, samples_per_chain,
n_params = n_params)
```
```{r}
ds <- 4
posterior_sample <- bind_rows(ll_list_right[[D_j]][[ds]],
ll_list_wrong[[D_j]][[ds]])
ds_subset <- c(4, 8, 12, 16)
posterior_subset <- lapply(ds_subset, \(ds) {
bind_rows(ll_list_right[[D_j]][[ds]],
ll_list_wrong[[D_j]][[ds]])
})
```
#### Incidence fit
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior predictive checks against latent incidence. Dots denote synthetic data while lines indicate simulations from candidates' ODE structure. We configure these structures using samples from the posterior distribution.")
```
```{r, fig.cap = caption}
set.seed(1138)
incidence_df <- extract_incidence(posterior_sample, 20)
plot_incidence_prediction(incidence_df, y_df, D_i, D_j, ds)
```
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Fit scores by candidate model and type of data. $x$ denotes latent incidence, whereas $y$ indicates observed incidence. Vertical line denotes the mean.")
```
```{r, fig.cap = caption}
plot_hist_mase2(posterior_sample, y_df, c(0, 0.75))
```
#### Joint posterior distribution (right latent period)
This posterior distribution was derived from fitting the $M^{34}$
candidate to one $D^{34}$ incidence report.
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior distribution. The diagonal shows the posterior marginal distributions (histograms). In the lower triangular part, the joint posterior distribution of each possible\ncombination of two parameters is displayed (heatmaps). The upper triangular part shows the correlation among parameters.")
```
```{r, fig.cap = caption}
joint_posterior_df <- posterior_sample |> filter(M_i == !!D_i,
M_j == !!D_j) |>
select(par_beta, par_rho, I0)
pairs_posterior(joint_posterior_df, strip_text = 10, axis_text_size = 7,
M_j = D_j)
```
#### Joint posterior distribution (wrong $j$)
This posterior distribution was obtained from fitting the $M^{14}$ candidate to
one $D^{34}$ incidence report.
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior distribution. The diagonal shows the posterior marginal distributions (histograms). In the lower triangular part, the joint posterior distribution of each possible\ncombination of two parameters is displayed (heatmaps). The upper triangular part shows the correlation among parameters.")
```
```{r, fig.cap = caption}
joint_posterior_df <- posterior_sample |> filter(M_i != !!D_i,
M_j == !!D_j) |>
select(par_beta, par_rho, I0)
pairs_posterior(joint_posterior_df, strip_text = 10, axis_text_size = 7,
M_j = D_j)
```
#### Marginal posterior distributions
##### Basic reproduction number ($\Re_0$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the basic reproduction number by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_R0_comparison_by_dataset(posterior_subset, R0_val, 2, 3, D_i, D_j)
```
##### Reporting rate ($\rho$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the reporting rate by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_par_estimates_by_dataset(posterior_subset, "par_rho", rho_val,
x_min = 0.5, x_max = 1, x_label = "rho",
D_i, D_j)
```
##### Initial number of infectious individuals ($I_0$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the initial number of infectious individuals by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_par_estimates_by_dataset(posterior_subset, "I0", 1, x_min = 0,
x_max = 1.5, x_label = "I[0]", D_i, D_j)
```
### Summary
#### Coverage
```{r}
actual_values <- data.frame(par = c("R0", "par_rho", "I0"),
actual_val = c(R0_val, rho_val, 1))
map_df(ll_list_right, calculate_coverage, actual_values, inv_gamma_val) |>
pivot_wider(names_from = par, values_from = pct_right) -> coverage_1
map_df(ll_list_wrong, calculate_coverage, actual_values, inv_gamma_val) |>
pivot_wider(names_from = par, values_from = pct_right) -> coverage_2
```
```{r}
coverage_df <- bind_rows(coverage_1, coverage_2) |>
arrange(D_ij)
table_coverage(coverage_df, "Table 1. Coverage table")
```
# Four-unknown parameterisation
In this parameterisation, for each candidate, we assume one additional unknown
parameter: the recovery rate ($\gamma$). Furthermore, all candidates are coupled
with the Poisson distribution. In light of the equivalency found in the previous
section, we restrict model candidates to those with an exponentially-distributed
latent period ($i = 1$).
```{r}
root_fldr <- "./Saved_objects/Inference/Synthetic_data/SEIR/Case_3/Four_params"
M_i <- 1
M_j <- 1:4
n_params <- 5
all_files <- readRDS("./Stan_files/Inference/Four_params/pois/meta_info.rds")
fltr <- map_lgl(all_files, \(fl_list) fl_list$E_ord == M_i)
info_files <- all_files[fltr]
ll_list <- vector(mode = "list", length = length(M_j))
```
## Prior distributions
Prior distributions for $\beta$, $\rho$, and $I^1_0$ are identical to those
described [here](#link1).
### Recovery rate ($\gamma$)
This prior distribution assumes that the magnitude of the mean infectious
period ($\gamma^{-1}$) is at least one.
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Histogram from samples obtained from the recovery rate's prior distribution")
```
```{r, fig.cap = caption, fig.align='left', fig.height = 3, fig.width = 5}
prior_df <- data.frame(x = rbeta(1e5, 2, 2))
plot_prior(prior_df, "gamma", "gamma~'~ beta(2, 2)'", c(0, 1), 15)
```
## Posterior distributions
### Fitting $D^{31}$
```{r}
D_i <- 3
D_j <- 1
n_data <- 20
create_backup_fldrs(D_i, D_j, n_data, M_i, M_j, root_fldr)
```
```{r}
ll_list[[D_j]] <- fit_datasets(D_i, D_j, n_data, y_df, info_files,
root_fldr, n_chains, samples_per_chain,
n_params = n_params)
```
```{r}
ds <- 5
posterior_sample <- ll_list[[D_j]][[ds]]
ds_subset <- c(5, 9, 13, 17)
posterior_subset <- ll_list[[D_j]][ds_subset]
```
#### Incidence fit
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior predictive checks against latent incidence. Dots denote synthetic data while lines indicate simulations from candidates' ODE structure. We configure these structures using samples from the posterior distribution.")
```
```{r, fig.cap = caption}
incidence_df <- extract_incidence(posterior_sample, 20)
plot_incidence_prediction(incidence_df, y_df, D_i, D_j, ds)
```
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Fit scores by candidate model and type of data. $x$ denotes latent incidence, whereas $y$ indicates observed incidence. Vertical line denotes the mean.")
```
```{r, fig.cap = caption}
plot_hist_mase(posterior_sample, y_df)
```
#### Joint posterior distribution {#link2}
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior distribution. The diagonal shows the posterior marginal distributions (histograms). In the lower triangular part, the joint posterior distribution of each possible\ncombination of two parameters is displayed (heatmaps). The upper triangular part shows the correlation among parameters.")
```
```{r, fig.cap = caption}
joint_posterior_df <- posterior_sample |> filter(M_j == !!D_j) |>
select(par_beta, par_rho, I0, par_gamma)
pairs_posterior(joint_posterior_df, strip_text = 10, axis_text_size = 7,
M_j = D_j)
```
#### Marginal posterior distributions
##### Basic reproduction number ($\Re_0$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the basic reproduction number by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_R0_comparison_by_dataset(posterior_subset, R0_val, 0, 15, D_i, D_j)
```
##### Reporting rate ($\rho$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the reporting rate by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_par_estimates_by_dataset(posterior_subset, "par_rho", rho_val,
x_min = 0.5, x_max = 1, x_label = "rho", D_i,
D_j)
```
##### Initial number of infectious individuals ($I_0$)
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Estimates of the initial number of infectious individuals by dataset and model candidate. Error bars denote 95\\% credible intervals. The value in the middle of the bars indicates the distance between the marginal posterior's mean and the true value (vertical line).")
```
```{r, fig.cap = caption}
plot_par_estimates_by_dataset(posterior_subset, "I0", 1, x_min = 0,
x_max = 3, x_label = "I[0]", D_i, D_j)
```
##### Recovery rate ($\gamma$)
For this parameter, we opt for a different visualisation. Specifically, for
each model candidate fitting a particular $D^{31}$ incidence report, we
compare the the marginal posterior distribution against the prior
distribution via histograms.
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Comparison between the recovery rate's prior distribution (grey histograms) against four marginal posterior distributions obtained from each candidate (coloured histograms).")
```
```{r, fig.cap = caption}
prior_df <- data.frame(sims = rbeta(4e3, 2, 2))
prior_posterior_comparison(posterior_sample, prior_df, "par_gamma")
```
### Fitting $D^{32}$
```{r}
D_i <- 3
D_j <- 2
n_data <- 20
create_backup_fldrs(D_i, D_j, n_data, M_i, M_j, root_fldr)
```
```{r}
ll_list[[D_j]] <- fit_datasets(D_i, D_j, n_data, y_df, info_files,
root_fldr, n_chains, samples_per_chain,
n_params = n_params)
```
```{r}
ds <- 5
posterior_sample <- ll_list[[D_j]][[ds]]
ds_subset <- c(5, 9, 13, 17)
posterior_subset <- ll_list[[D_j]][ds_subset]
```
#### Incidence fit
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior predictive checks against latent incidence. Dots denote synthetic data while lines indicate simulations from candidates' ODE structure. We configure these structures using samples from the posterior distribution.")
```
```{r, fig.cap = caption}
incidence_df <- extract_incidence(posterior_sample, 20)
plot_incidence_prediction(incidence_df, y_df, D_i, D_j, ds)
```
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Fit scores by candidate model and type of data. $x$ denotes latent incidence, whereas $y$ indicates observed incidence. Vertical line denotes the mean.")
```
```{r, fig.cap = caption}
plot_hist_mase(posterior_sample, y_df)
```
#### Joint posterior distribution
```{r}
fig_cntr <- fig_cntr + 1
caption <- str_glue("Fig {fig_cntr}. Posterior distribution. The diagonal shows the posterior marginal distributions (histograms). In the lower triangular part, the joint posterior distribution of each possible\ncombination of two parameters is displayed (heatmaps). The upper triangular part shows the correlation among parameters.")
```
```{r, fig.cap = caption}
joint_posterior_df <- posterior_sample |> filter(M_j == !!D_j) |>
select(par_beta, par_rho, I0, par_gamma)
pairs_posterior(joint_posterior_df, strip_text = 10, axis_text_size = 7,
M_j = D_j)
```
#### Marginal posterior distributions